Answer:
23376 days
Explanation:
The problem can be solved using Kepler's third law of planetary motion which states that the square of the period T of a planet round the sun is directly proportional to the cube of its mean distance R from the sun.

where k is a constant.
From equation (1) we can deduce that the ratio of the square of the period of a planet to the cube of its mean distance from the sun is a constant.

Let the orbital period of the earth be
and its mean distance of from the sun be
.
Also let the orbital period of the planet be
and its mean distance from the sun be
.
Equation (2) therefore implies the following;

We make the period of the planet
the subject of formula as follows;

But recall that from the problem stated, the mean distance of the planet from the sun is 16 times that of the earth, so therefore

Substituting equation (5) into (4), we obtain the following;

cancels out and we are left with the following;

Recall that the orbital period of the earth is about 365.25 days, hence;

Answer:
The distance traveled in 1 year is:
Explanation:
Given
--- speed
--- time
Required
The distance traveled
This is calculated as:

So, we have:

This gives:


-- approximated
When placing the piece of aluminium in water, the level of water will rise by an amount equal to the volume of the piece of aluminum.
Therefore, we need to find the volume of that piece.
Density can be calculated using the following rule:
Density = mass / volume
Therefore:
volume = mass / density
we are given that:
the density = 2.7 g / cm^3
the mass = 16 grams
Substitute in the equation to get the volume of the piece of aluminum as follows:
volume = 16 / 2.7 = 5.9259 cm^3
Since the water level will rise to an amount equal to the volume of aluminum, therefore, the water level will rise by 5.9259 cm^3
That's ONLY true when the pendulum is hanging
in the center position and not moving.
The common formula for work is:
Work = force x displacement
W = F x d