Answer:
friction
Explanation:
electrons from one uncharged object to another uncharged object by rubbing. When two uncharged objects rub together, some electrons from one object can move onto the other object. hope this is your right
and not just a riddle
1.205 × 10²³ atoms of oxygen will be present in 7.51 grams of glycine with formula C₂H5O2N. Details about number of atoms can be found below.
How to calculate number of atoms?
The number of atoms of a substance can be calculated by multiplying the number of moles of the substance by Avogadro's number.
However, the number of moles of oxygen in glycine can be calculated using the following expression:
Molar mass of C₂H5O2N = 75.07g/mol
Mass of oxygen in glycine = 32g/mol
Hence; 32/75.07 × 7.51 = 3.2grams of oxygen in glycine
Moles of oxygen = 3.2g ÷ 16g/mol = 0.2moles
Number of atoms of oxygen = 0.2 × 6.02 × 10²³ = 1.205 × 10²³ atoms
Therefore, 1.205 × 10²³ atoms of oxygen will be present in 7.51 grams of glycine with formula C₂H5O2N.
Learn more about number of atoms at: brainly.com/question/8834373
#SPJ1
Answer:
magnesium metal melts = physical change
magnesium metal ignites = chemical change
Explanation:
<em>Physical changes</em> are those in which the identity of the subtance <u>remains unaltered</u>. No new compounds are formed. They involve generally changes in <u>agreggation states of matter</u>: solid, liquid or gas. The first experiment, in which magnesium metal melts is a physical change because it only changes the state of matter, from solid to liquid, but it is still magnesium metal.
Conversely, <em>chemical changes</em> involve atoms combinations to form new compounds. The second experiment, in which magnesium metal ignites, is a chemical change. After the change, magnesium metal is no longer the metal but a metal oxide.
Answer:
0.2 M
Explanation:
Step 1: Given data
- Mass of sugar (sucrose): 15 g
- Volume of water: 0.2 L (we will assume it is the volume of the solution)
There are different ways to express the concentration of a solution. We will calculate molarity, which is one of the most used.
Step 2: Calculate the moles of sucrose
The molar mass of sucrose is 342.3 g/mol.
15 g × 1 mol/342.3 g = 0.044 mol
Step 3: Calculate the molarity of the solution
Molarity is equal to the moles of solute divided by the liters of solution.
M = 0.044 mol/0.2 L = 0.2 M