Answer:
About 547 grams.
Explanation:
We want to determine the mass of copper (II) bicarbonate produced when a reaction produces 2.95 moles of copper (II) bicarbonate.
To do so, we can use the initial value and convert it to grams using the molar mass.
Find the molar mass of copper (II) bicarbonate by summing the molar mass of each individual atom:

Dimensional Analysis:

In conclusion, about 547 grams of copper (II) bicarbonate is produced.
<h3><u>Answer;</u></h3>
A) Its temperature will fall continuously until it condensed into a liquid.
<h3><u>Explanation</u>;</h3>
- <em><u>Steam or water vapor is the gaseous state of liquid water. When water vapor above a temperature of 100 degrees Celsius is cooled, the temperature falls continuously, and it undergoes condensation at a temperature of 100 degrees Celsius and turns into liquid water.</u></em>
- The change of state from gaseous to liquid state occurs as a result of latent heat of vaporization that the water vapor carries.
Answer:
Covalent Bonds are formed when two non-metals share electrons
Hope this helps