Answer:
The final pressure of the carbon dioxide gas will 11.84 atm.
Explanation:
Moles of carbonic acid = 

According to reaction, 1 mol of carbonic acid gives 1 mole of carbon dioxide gas.
Then 0.9677 moles of carbonic acid will give :
of carbon dioxide
Moles of carbon dioxide gas = n = 0.09677 mol
Volume of soda bottle = 
Pressure of the carbon dioxide gas = P
Temperature of the carbon dioxide gas = T = 298 K
(ideal gas law)

The final pressure of the carbon dioxide gas will 11.84 atm.
Answer:
<span>Increasing concentration, temperature and surface area will increase the yield of products.
Explanation:
Concentration:
Increase in concentration of reactants will increase the number of reactants per unit volume. Therefore, the probability of collisions will increase hence, it will result in the increase in yield.
Temperature:
Increase in temperature increases the kinetic energy of reactants. Therefore, the increase in velocity of reactants results in the collisions with high energy. It makes it feasible for reactants to attain the optimum energy (activation energy) to convert into products with good yield.
Surface Area:
The reactants in grinded / powder form reacts fast as compared to solid form. In fact, grinding results in increase of the surface area of reactants. Greater surface area increases the probability of reactants to colloid. Hence, increases the yield.</span>
Answer:
The information that can be used to determine which mixture has the higher proportion of KCl IS INFORMATION ABOUT THE MASS OF CHLORINE IN EACH MIXTURE, THIS INFORMATION CAN BE OBTAINED BY USING THE LAW OF DEFINITE PROPORTION.
Explanation:
The law of definite proportion states that the chemical composition by mass of a chemical compound is always constant. For instance, a chemical compound that is made up of two elements will always contain the same proportions of the constituent elements regardless of the quantity of chemical that was used.
Using the law of definite proportion, we can determine the proportion of sodium and chlorine in NaCl and the proportion of potassium and chlorine in KCl if the mass of chlorine that was used is known. Based on the results obtained, one can easily determine the mixtures that has higher proportion of KCl.
Question 1 :
V1/T1 = V2/T2
3.0L/273K = V2/373K
To get the value of Z, cross multiply
3.0L x 373K = 273K x V2
1119 = 273V2
Divide both sides by 273
1119/273 = 273V2/273
4.10L = V2
The new volume is 4.10 liters
Question 2 :
P1/T1 = P2 /T2
P1 = 880 kPA= 880 *10^3 Pa
T1 = 250 K
T2 = 303 K
P2 =?
Substituting for P2
P2 = P1 T2/ T1
P2 = 880 kPa * 303 / 250
P2 = 266,640 kPa/ 250
P2 = 1066.56 kPa.
The new pressure of the gas is 1066.56 kPa
Question 3 :
Given that:
Volume of gas V = 4.80L
(since 1 liter = 1dm3
4.80L = 4.80dm3)
Temperature T = 62°C
Convert Celsius to Kelvin
(62°C + 273 = 335K)
Pressure P = 2.9 atm
Number of moles of gas N = ?
Apply ideal gas equation
pV = nRT
2.9atm x 4.8dm3 = n x (0.0082 atm dm3 K-1 mol-1 x 335K)
13.92 atm dm3 = nx 2.747 atm dm3 mol-1
n = 13.92/2.747
n = 5.08 moles
There are 5.08 moles of gas contained in the sample
Question 4 :
Volume of gas V = 3.47L
(since 1 liter = 1dm3
3.47L = 3.47dm3)
Temperature T = 85.0°C
Convert Celsius to Kelvin
(85.0°C + 273 = 358K)
Pressure P = ?
Number of moles of gas N = 0.100 mole
Apply ideal gas equation
pV = nRT
p x 3.47dm3 = 0.10 x (0.0082 atm dm3 K-1 mol-1 x 358K)
p x 3.47dm3 = 0.29 atm dm3
p = (0.29 atm dm3 / 3.47 dm3)
p = 0.085 atm
If 1 atm = 760 mm Hg
0.085atm = 0.085 x 760
= 64.6 mm Hg
The pressure of the gas is 64.6 mm hg
3 is trans form 4 is subsection zone and 5is convergent