Answer:
(a). The distance is 49.79 m.
(b). The speed of the ball is 24.39 m/s.
Explanation:
Given that,
Speed = 20 m/s
Angle = 40°
Height = 22 m
Time = 3.25 sec
(a). We need to calculate the distance
Using formula of distance

Put the value into the formula


(b). We need to calculate the horizontal velocity
Using formula of velocity

Put the value into the formula


We need to calculate the vertical velocity
Using equation of motion

Put the value into the formula


Negative sign shows the opposite direction.
We need to calculate the speed of ball
Using formula of speed



Hence, (a). The distance is 49.79 m.
(b). The speed of the ball is 24.39 m/s.
The Silence of the Lambs ends when Hannibal Lecter, from a payphone in the tropics, congratulates FBI Academy graduate Clarice Starling and gently warns her not to hunt him, ending the call by saying he had to go because he was having a friend for dinner, as he watched his hospital tormenter, Dr. Chilton, disembark from a plane. While that nervous laugh allowed movie goers to summon the courage to leave the theater and run to their cars, the original ending scripted by Tally gave no such quarter. When Lecter speaks to Starling, he compliments her outfit, which makes her realize he had watched from a distance. In the original ending, Lecter is cutting orange segments with a small paring knife, while he speaks to Clarice. As he hangs up the phone, the camera shot widens. We discover that he”s at a desk in a book lined office. There is the body of a bodyguard on the floor, and then we see Lecter is not alone. Chilton is trussed up in a chair across from him, the same method of restraints the doctor used on Lecter earlier in the movie. Lecter rises, slowly, a dreamy gleam in his eye, as he approaches his terrified victim, paring knife in hand. “Shall we begin?”
Answer:
The average speed of the blood in the capillaries is 0.047 cm/s.
Explanation:
Given;
radius of the aorta, r₁ = 1 cm
speed of blood, v₁ = 30 cm/s
Area of the aorta, A₁ = πr₁² = π(1)² = 3.142 cm²
Area of the capillaries, A₂ = 2000 cm²
let the average speed of the blood in the capillaries = v₂
Apply continuity equation to determine the average speed of the blood in the capillaries.
A₁v₁ = A₂v₂
v₂ = (A₁v₁) / (A₂)
v₂ = (3.142 x 30) / (2000)
v₂ = 0.047 cm/s
Therefore, the average speed of the blood in the capillaries is 0.047 cm/s.