Solve the equation.it is hard to see
The power dissipated across a component can be calculated through the formula P=I^2xR
Substituting the values in we get P=(0.5)^2x10=2.5W
Answer:
The appropriate solution is "2.78 mm".
Explanation:
Given:

or,



or,

As we know,
Fringe width is:
⇒ 
hence,
Separation between second and third bright fringes will be:
⇒ 


or,

1) 0N... friction opposes the motion of an object, since the block is at rest there is no motion thus no friction
2) F=ma
= (5.5kg)(30m/s)
=165 N
Answer:
Micro and radio waves.
Lower energy.
Gamma rays.
Explanation:
The electromagnetic spectrum is the range of frequencies of electromagnetic radiation and their respective wavelengths.
Ionising radiation os defined as the energy required of photons of a wave to ionize atoms, causing chemical reactions.
The energy of the wave depends on both the amplitude and the frequency. If the energy of each wavelength is a discrete packet of energy, a high-frequency wave will deliver more of these packets per unit time than a low-frequency wave. In summary, the longer the wavelength, the lower the energy to ionise.
The velocity of a wave is directly proportional to the frequency of that wave.
c = f * lambda
Where,
c = velocity of the wave
f = frequency of the wave = 1/time
Lambda = wavelength.
From the above expression, the longer the wavelength, lambda the shorter the frequency.
Examples of waves with longer wavelengths are, micro and radio waves, while radiations with shorter wavelengths like gamma rays.