True. The prototype is usually the "rough draft" the figure out what needs fixed or upgraded before they make the final product "final draft". Hope that helped!
The volume of 0.160 m Li2S solution required to completely react with 130 ml of 0.160 CO(NO3)2 is calculated as below
write the reacting equation
Co(NO3)2 + Li2S = 2LiNO3 + COS
find the moles of CO(NO3)2 = molarity x volume
= 130 ml x 0.160=20.8 moles
since the reacting moles between CO(NO3)2 to LiS is 1:1 the moles of LiS is also 20.8 moles
volume of Lis is therefore = moles of Lis/ molarity of LiS
= 20.8/0.160 = 130 Ml
In an ideal gas, there are no attractive forces between the gas molecules, and there is no rotation or vibration within the molecules. The kinetic energy of the translational motion of an ideal gas depends on its temperature. The formula for the kinetic energy of a gas defines the average kinetic energy per molecule. The kinetic energy is measured in Joules (J), and the temperature is measured in Kelvin (K).
K = average kinetic energy per molecule of gas (J)
kB = Boltzmann's constant ()
T = temperature (k)
Kinetic Energy of Gas Formula Questions:
1) Standard Temperature is defined to be . What is the average translational kinetic energy of a single molecule of an ideal gas at Standard Temperature?
Answer: The average translational kinetic energy of a molecule of an ideal gas can be found using the formula:
The average translational kinetic energy of a single molecule of an ideal gas is (Joules).
2) One mole (mol) of any substance consists of molecules (Avogadro's number). What is the translational kinetic energy of of an ideal gas at ?
Answer: The translational kinetic energy of of an ideal gas can be found by multiplying the formula for the average translational kinetic energy by the number of molecules in the sample. The number of molecules is times Avogadro's number:
Answer:
930 g
Explanation:
D = m/V Multiply both sides by V
m = VD
<em>Data:
</em>
V = 372 cm³
D = 2.70 g/cm³
<em>Calculation:
</em>
m = 372 × 2.50
m = 930 g
The mass of Al is 930 g.