Answer:
m = 63.7 kg
Explanation:
As we know that when mass connected to the bungee cord stretch the string then the gravitational potential energy of the person will convert into potential energy of the string at the end
now here we know that when person jump from the top and reach at the end then loss in gravitational potential energy is given as



now when it is at the end of the motion stretch in the string will be

now potential energy of string is given as


now by energy conservation we have


Answer:
usually its because they dont wanna talk
Explanation:
I know what thats like. Either that or they don't trust you. It could be something personal or they just dont wanna talk. But i wouldn't push. Just let them talk if they want to
<span>As time increases, if the particle's velocity changes sign from positive to negative, or negative to positive, then it must have changed (opposite) direction on its linear path. As time increases on a graph of the particle's position versus time, it changes directions when position changes from increasing to decreasing, or from decreasing to increasing.</span>
Answer : Option D) A dropped wallet is kicked around the floor of a busy train station.
Explanation : The description that best suits the model for the energy transfer that occurs in the radiative zone is -
<h3>A dropped wallet is kicked around the floor of a busy train station.</h3>
As in the radiation zone, which is also called as radiative zone or radiative region in the layer of a star's interior where energy is primarily transported toward the exterior by means of radiative diffusion and thermal conduction. This can be correlated with the example of a dropped wallet in a busy train station as the wallet would be kicked by many people who are in a hurry to travel, this represents the radiative diffusion. So, every time the wallet is being kicked by someone the energy is getting transformed.
Answer:
maximum height: p(t) = Vo * t - 1/2 * g * t^2
p’(t) = v(t) = 0 = Vo - g*t. So, maximum height occurs when t = Vo / g
p(Vo / g) = Vo^2/g - 1/2 * g * (Vo/g)^2
Vo = 10 m / s. Let’s approximate g = 10 m / s^2
p(Vo / g) = 10^2 / 10 - 1/2 * 10 * (10/10)^2 = 10 - 5 = 5 meters (approximately)
Calculation of time:
v = u + gt
0 = 10√2 + (-10)t
-10√2 = -10t
2 = √2s