Answer:
I hope 2 amperes of current passes
After the collision the magnitude of the momentum of the system is Mv
Given:
mass of 1st object = M
speed of 1st object = v
mass of 2nd object = M
speed of 2nd object = 0
To Find:
magnitude of the momentum after collision
Solution: Product of the mass of a particle and its velocity. Momentum is a vector quantity; i.e., it has both magnitude and direction. Isaac Newton's second law of motion states that the time rate of change of momentum is equal to the force acting on the particle.
Applying conservation of linear momentum
Mv + M(0) = 2MV
Mv = 2MV
V = v/2
So, after collision momentum is
p = 2MV = 2xMxv/2 = Mv
So, after collision momentum is Mv
Learn more about Momentum here:
brainly.com/question/1042017
#SPJ4
Answer:
You can change the momentum of an object by giving the object more force or less force.
Explanation:
Think about a ball. It is going slow, you push it and you give it more momentum.
Answer: 4nmeter
Explanation: The two observer a and b will measure the same wavelength since the speed of the space craft is very small compared with the speed of light c. That is
V which is the speed of space craft 15000km/s = 15000000m/s
Comparing this with the speed of light c 3*EXP(8)m/s we have
15000000/300000000
= 0.05=0.1
Therefore the speed of the space craft V in terms of the speed of light c is 0.1c special relativity does not apply to object moving at such speed. So the wavelength would not be contracted it will remain same for both observers.