Answer:
The woman's distance from the right end is 1.6m = (8-6.4)m.
The principles of moments about a point or axis running through a point and summation of forces have been used to calculate the required variable.
Principle of moments: the sun of clockwise moments must be equal to the sun of anticlockwise moments.
Also the sun of upward forces must be equal to the sun of downward forces.
Theses are the conditions for static equilibrium.
Explanation:
The step by step solution can be found in the attachment below.
Thank you for reading this solution and I hope it is helpful to you.
Answer:Simple Covalent substance
Explanation:Simple covalent substance describes a substance that has a low melting point and poor electrical conductivity because:
(1)melting point :For the covalent bond and intermolecular force that are present in a simple covalent substance,energy is needed to break the forces of attraction present. In the simple covalent substance, little energy is needed because the intermolecular forces present are broken because they are weaker compared to the covalent bond present.
Therefore, when simple covalent substance melts,only the intermolecular forces are broken leaving only the covalent bond in the substance.
(2) poor conductivity: for a substance to conduct electricity,it must have charged particles which are free to move to and fro.
But in the simple covalent substance,there are no charged particles that can be separated due to the covalent bond present in simple covalent substance.
Respuesta:
0,0560 cal / gºC.
Explicación:
Cantidad de calor; (Q)
Q = mcΔt; Δt = t2 - t1
m = masa, c = capacidad calorífica específica; Δt = cambio de temperatura
c de agua = 1 cal / gºC
c de aluminio = 0,22 cal / gºC
QTotal = Q de agua + Q de aluminio
Q de agua = 450 * 1 * (26 - 23) = 1350 cal
Q de aluminio = 60 * 0.22 * (26 - 23) = 39.6 cal
QTotal = 1350 + 39,6 = 1389,6 cal
Calor perdido = calor ganado
QTotal = calor perdido
- 1389,6 = 335,2 * c * (26 - 100)
-1389,6 = −24804,8 * c
c = 1389,6 / 24804,8
c = 0,056021 cal / gºC.
Capacidad calorífica específica de la plata = 0,0560 cal / gºC.
Capacitance is a measure of charge stored per volt.