Jupiter that is the answer
good luck
The concept required to solve this problem is linked to inductance. This can be defined as the product between the permeability in free space by the number of turns squared by the area over the length. Recall that Inductance is defined as the opposition of a conductive element to changes in the current flowing through it. Mathematically it can be described as

Here,
= Permeability at free space
N = Number of loops
A = Cross-sectional Area
l = Length
Replacing with our values we have,



Therefore the Inductance is 
Answer:
Answer:Neurons communicate through an electrochemical process. Sensory receptors interact with stimuli such as light, sound, temperature, and pain which is transformed into a code that is carried to the brain by a chain of neurons. Then systems of neurons in the brain interpret this information.
Answer:Neurons communicate through an electrochemical process. Sensory receptors interact with stimuli such as light, sound, temperature, and pain which is transformed into a code that is carried to the brain by a chain of neurons. Then systems of neurons in the brain interpret this information.Explanation:
bro edit it yrself
For the answer to this question,
Thalia must consider the weight of the object and the mass of the sculpture. Weight and mass are different things. She should also consider the time on how long it will take to move it and where she'll move it.
Answer:
Intensity of the light (first polarizer) (I₁) = 425 W/m²
Intensity of the light (second polarizer) (I₂) = 75.905 W/m²
Explanation:
Given:
Unpolarized light of intensity (I₀) = 950 W/m²
θ = 65°
Find:
a. Intensity of the light (first polarizer)
b. Intensity of the light (second polarizer)
Computation:
a. Intensity of the light (first polarizer)
Intensity of the light (first polarizer) (I₁) = I₀ / 2
Intensity of the light (first polarizer) (I₁) = 950 / 2
Intensity of the light (first polarizer) (I₁) = 425 W/m²
b. Intensity of the light (second polarizer)
Intensity of the light (second polarizer) (I₂) = (I₁)cos²θ
Intensity of the light (second polarizer) (I₂) = (425)(0.1786)
Intensity of the light (second polarizer) (I₂) = 75.905 W/m²