Answer:
Explanation:
Unknown fork frequency is either
335 + 5.3 = 340.3 Hz
or
335 - 5.3 = 329.7 Hz
After we modify the known fork, the unknown fork frequency equation becomes either
(335 - x) + 8 = 340.3
(335 - x) = 332.3
x = 2.7 Hz
or
(335 - x) + 8 = 329.7
(335 - x) = 321.7
x = 13.3 Hz
IF the unknown fork frequency was 340.3 Hz,
THEN the 335 Hz fork was detuned to 335 - 2.7 = 332.3 Hz
IF the unknown fork frequency was 329.7 Hz,
THEN the 335 Hz fork was detuned to 335 - 13.3 = 321.7 Hz
Answer:
finding Cepheid variable and measuring their periods.
Explanation:
This method is called finding Cepheid variable and measuring their periods.
Cepheid variable is actually a type of star that has a radial pulsation having a varying brightness and diameter. This change in brightness is very well defined having a period and amplitude.
A potent clear link between the luminosity and pulsation period of a Cepheid variable developed Cepheids as an important determinants of cosmic criteria for scaling galactic and extra galactic distances. Henrietta Swan Leavitt revealed this robust feature of conventional Cepheid in 1908 after observing thousands of variable stars in the Magellanic Clouds. This in fact turn, by making comparisons its established luminosity to its measured brightness, allows one to evaluate the distance to the star.
Answer:
T₂ = 95.56°C
Explanation:
The final resistance of a material after being heated is given by the relation:
R' = R(1 + αΔT)
where,
R' = Final Resistance = 207.4 Ω
R = Initial Resistance = 154.9 Ω
α = Temperature Coefficient of Resistance of Tungsten = 0.0045 °C⁻¹
ΔT = Change in Temperature = ?
Therefore,
207.4 Ω = 154.9 Ω[1 + (0.0045°C⁻¹)ΔT]
207.4 Ω/154.9 Ω = 1 + (0.0045°C⁻¹)ΔT
1.34 - 1 = (0.0045°C⁻¹)ΔT
ΔT = 0.34/0.0045°C⁻¹
ΔT = 75.56°C
but,
ΔT = Final Temperature - Initial Temperature
ΔT = T₂ - T₁ = T₂ - 20°C
T₂ - 20°C = 75.56°C
T₂ = 75.56°C + 20°C
<u>T₂ = 95.56°C</u>
Answer:
THE RUBBER BALL
Explanation:
From the question we are told that
The mass of the rubber ball is 
The initial speed of the rubber ball is 
The final speed at which it bounces bank 
The mass of the clay ball is 
The initial speed of the clay ball is 
The final speed of the clay ball is 
Generally Impulse is mathematically represented as
where
is the change in the linear momentum so

For the rubber is


=> 
For the clay ball


=> 
So from the above calculation the ball with the a higher magnitude of impulse is the rubber ball
Answer:
"h" signifies Planck's constant
Explanation:
In the equation energy E = h X v
The "h" there signifies Planck's constant
Planck's constant is a value, that shows the rate at which the energy of a photon increases/decreases, as the frequency of its electromagnetic wave changes.
It was named after Max Planck who discovered this unique relationship between the energy of a light wave and its frequency.
Planck's constant, "h" is usually expressed in Joules second
Planck's constant = 