Adults have stem cells because they are needed to repair certain tissues in the body such as in the muscles, bone marrow, skin, teeth, heart, and liver, to name a few. Thus, they can develop into many different cell types and function to replace older and damaged tissues.
There will be needed 982.35 mL of solution to obtain 16.1 grams of the salt.There will be needed mL of
Why?
In order to calculate how many milliliters are needed to obtain 16.1 grams of the salt given its concentration, we first need to find its chemical formula which is the following:

Now that we know the chemical formula of the substance, we need to find its molecular mass. We can do it by the following way:

We have that the molecular mass of the substance will be:

Therefore, knowing the molecular mass of the substance, we need to calculate how many mols represents 16.1 grams of the same substance, we can do it by the following way:


Finally, if we need to calculate how many milliliters are needed, we need to use the following formula:


Now, substituting and calculating, we have:

Henc, there will be needed 982.35 mL of solution to obtain 16.1 grams of the salt.
Have a nice day!
Answer:
a. electrophilic aromatic substitution
b. nucleophilic aromatic substitution
c. nucleophilic aromatic substitution
d. electrophilic aromatic substitution
e. nucleophilic aromatic substitution
f. electrophilic aromatic substitution
Explanation:
Electrophilic aromatic substitution is a type of chemical reaction where a hydrogen atom or a functional group that is attached to the aromatic ring is replaced by an electrophile. Electrophilic aromatic substitutions can be classified into five classes: 1-Halogenation: is the replacement of one or more hydrogen (H) atoms in an organic compound by a halogen such as, for example, bromine (bromination), chlorine (chlorination), etc; 2- Nitration: the replacement of H with a nitrate group (NO2); 3-Sulfonation: the replacement of H with a bisulfite (SO3H); 4-Friedel-CraftsAlkylation: the replacement of H with an alkyl group (R), and 5-Friedel-Crafts Acylation: the replacement of H with an acyl group (RCO). For example, the Benzene undergoes electrophilic substitution to produce a wide range of chemical compounds (chlorobenzene, nitrobenzene, benzene sulfonic acid, etc).
A nucleophilic aromatic substitution is a type of chemical reaction where an electron-rich nucleophile displaces a leaving group (for example, a halide on the aromatic ring). There are six types of nucleophilic substitution mechanisms: 1-the SNAr (addition-elimination) mechanism, whose name is due to the Hughes-Ingold symbol ''SN' and a unimolecular mechanism; 2-the SN1 reaction that produces diazonium salts 3-the benzyne mechanism that produce highly reactive species (including benzyne) derived from the aromatic ring by the replacement of two substituents; 4-the free radical SRN1 mechanism where a substituent on the aromatic ring is displaced by a nucleophile with the formation of intermediary free radical species; 5-the ANRORC (Addition of the Nucleophile, Ring Opening, and Ring Closure) mechanism, involved in reactions of metal amide nucleophiles and substituted pyrimidines; and 6-the Vicarious nucleophilic substitution, where a nucleophile displaces an H atom on the aromatic ring but without leaving groups (such as, for example, halogen substituents).
Answer:
3 KOH(aq) + H3PO4(aq) = K3PO4(aq) + 3 H2O
Explanation:
Answer:
different cell specialized in different function