The molarity of the solutions are as follows:
- solution B has the highest molarity
- solutions A, D and F have the same molarity
- solutions A and C are mixed together have a lower molarity than B
- solution F and D will have the same molarity
- Volume of water required to be evaporated is 8.3 mL
<h3>What is molarity of a solution?</h3>
The molarity of a solution is the amount in moles of a substance present in a given volume of solution.
From the image of the solution given:
- solution B has the highest molarity
- solutions A, D and F have the same molarity
- when solutions A and C are mixed, the resulting solution have a lower molarity than B
- solution F and D will have the same molarity after 75 mL and 50 mL of water are added to each respectively
- the molarity of B is 12/50 = 4/16.7. Volume of water required to be evaporated = 25 - 16.7 = 8.3 mL
Therefore, the molarity of the solutions depends on the moles of substance present per given volume of solution.
Learn more about molarity at: brainly.com/question/24305514
#SPJ1
In a <u>Saturated </u>solution, the rate of dissociation equal to the rate of crystallization
Explanation:
A saturated solution is one than cannot dissolve any more solute because the solutes inter-molecular spaces are filled with the solute molecules at that temperature. When an attempt is made to dissolve more solute into the solution, the rate at which the solute is dissolved into the solution is equal to the rate at which excess solute is precipitated and crystallized.
Answer: 1 mole ➡️ 6.022×10²³ atoms of si.
X mole ➡️ 2.8×10²⁴ atoms of si.
X = 2.8×10×10²³/6.022×10²³
= 28/6.022
= 4.65 moles.
Explanation:
Answer:
a producer and consumer relationship how several food chains and related.