There are six atoms in the carbon
Answer:
308.2 g of NH₃.
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
3H₂ + N₂ —> 2NH₃
Next, we shall determine the mass of N₂ that reacted and the mass of NH₃ produced from the balanced equation. This can be obtained as follow:
Molar mass of N₂ = 2 × 14 = 28 g/mol
Mass of N₂ from the balanced equation = 1 × 28 = 28 g
Molar mass of NH₃ = 14 + (3×1)
= 14 + 3 = 17 g/mol
Mass of NH₃ from the balanced equation = 2 × 17 = 34 g
Summary:
From the balanced equation above,
28 g of N₂ reacted to produce 34 g of NH₃.
Finally, we shall determine the mass of NH₃ produced by the reaction of 253.8 g of N₂. This can be obtained as illustrated below:
From the balanced equation above,
28 g of N₂ reacted to produce 34 g of NH₃.
Therefore, 253.8 g of N₂ will react to produce = (253.8 × 34)/28 = 308.2 g of NH₃.
Thus, 308.2 g of NH₃ were obtained from the reaction.
Answer:
The elements can be classified as metals, nonmetals, or metalloids. Metals are good conductors of heat and electricity, and are malleable (they can be ... and electricity, and are not malleable or ductile; many of the elemental nonmetals are ... under certain circumstances, several of them can be made to conduct electricity.
Hope this helps!
Explanation:
Answer:-
Oxygen gains electrons and is reduced.
Explanation:-
For this reaction the balanced chemical equation is
4Fe + 3O2 --> 2Fe2O3
When Oxygen is present as oxygen gas, the oxidation number of O is Zero since it is the only element present in Oxygen gas.
Similarly Iron is present in Fe with oxidation number Zero.
In the case of Fe2O3, Oxygen has the oxidation number -2 while Iron has +3.
So the oxidation number of Oxygen goes from Zero to -2.
Since the oxidation number decreases Oxygen is reduced.
Since reduction involves gain of electrons, Oxygen gains electrons.
Answer:
1= 2H₂ + O₂ → 2H₂O
2=CaCo₃ + heat → CaO +CO₂
3=CH₄ + 2O₂ → CO₂ +2H₂O
4=HCl + NaOH → NaCl + H₂O
Explanation:
1 = Simple composition
The formation of water molecule is simple composition reaction. In this reaction two hydrogen atoms react with one oxygen atom and form one water molecules.
2H₂ + O₂ → 2H₂O
The amount of energy released is -285.83 KJ/mol. It is exothermic reaction.
2 = Simple decomposition reaction:
The break down of sodium hydrogen carbonate into sodium carbonate, carbondioxide and water is decomposition reaction. The decomposition reactions re mostly endothermic, because compound required energy to break.
2NaHCO₃ + heat → Na₂CO₃ + H₂O + CO₂
It is endothermic reaction.
Another example is:
CaCo₃ + heat → CaO +CO₂
3 = Combustion reaction
Consider the combustion of methane:
CH₄ + 2O₂ → CO₂ +2H₂O
The burning of methane is exothermic. The combustion reactions are exothermic because when fuel are burns they gives energy.
4 = Neutralization reaction
The neutralization reactions are those in which acid and base react to form the salt and the water. Some neutralization reactions are exothermic because they release heat. e.g
Consider the neutralization reaction of HCl and NaOH.
HCl + NaOH → NaCl + H₂O