1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dolphi86 [110]
3 years ago
15

Which statement explains why astigmatism causes objects to appear blurry?

Physics
2 answers:
Tasya [4]3 years ago
8 0
In the defect of "Astigmatism" eye cannot focus on common point, so the light rays get deflected. Here, the lens has two different focal points.

In short, option C is your final answer.

Hope this helps!
Elis [28]3 years ago
4 0
'C' is a simple explanation of astigmatism.
You might be interested in
A bicycle racer rides from a starting marker to a turnaround marker at 10 m/s. She then rides back along the same route from the
vitfil [10]

Answer:

12.31 m/s

Explanation:

If we recall from the previous knowledge we had about speed,

we will know that:

speed = distance/ time.

As such:

The average speed of the rider bicycle is

average speed = total distance/ total time

Mathematically, it can be computed as:

v_{avg} = \dfrac{d+d}{\dfrac{d}{v_1}+ \dfrac{d}{v_2}}

v_{avg} = \dfrac{2d}{\dfrac{d}{10 \ m/s}+ \dfrac{d}{16 \ m/s}}

v_{avg} = \dfrac{2}{\dfrac{1}{10 \ m/s}+ \dfrac{1}{16 \ m/s}}

v_{avg} = \dfrac{2}{\dfrac{13}{80 \ m/s}}

\mathbf{v_{avg} =12.31 \ m/s}

8 0
2 years ago
A moving bumper car hits the back bumper of a stationary bumper car. The momentum of the stationary car increases. Which happens
kolbaska11 [484]
It decreases because it gave its momentum to the other car.
7 0
3 years ago
Read 2 more answers
Pendulum clocks generally run fast in winter and slow in summer
Harman [31]
If the question is true or false then the answer is true
5 0
3 years ago
Read 2 more answers
A 3.5 kg object moving in two dimensions initially has a velocity v1 = (12.0 i^ + 22.0 j^) m/s. A net force F then acts on the o
lys-0071 [83]

Answer:

The work done by the force is 820.745 joules.

Explanation:

Let suppose that changes in potential energy can be neglected. According to the Work-Energy Theorem, an external conservative force generates a change in the state of motion of the object, that is a change in kinetic energy. This phenomenon is describe by the following mathematical model:

K_{1} + W_{F} = K_{2}

Where:

W_{F} - Work done by the external force, measured in joules.

K_{1}, K_{2} - Translational potential energy, measured in joules.

The work done by the external force is now cleared within:

W_{F} = K_{2} - K_{1}

After using the definition of translational kinetic energy, the previous expression is now expanded as a function of mass and initial and final speeds of the object:

W_{F} = \frac{1}{2}\cdot m \cdot (v_{2}^{2}-v_{1}^{2})

Where:

m - Mass of the object, measured in kilograms.

v_{1}, v_{2} - Initial and final speeds of the object, measured in meters per second.

Now, each speed is the magnitude of respective velocity vector:

Initial velocity

v_{1} = \sqrt{v_{1,x}^{2}+v_{1,y}^{2}}

v_{1} = \sqrt{\left(12\,\frac{m}{s} \right)^{2}+\left(22\,\frac{m}{s} \right)^{2}}

v_{1} \approx 25.060\,\frac{m}{s}

Final velocity

v_{2} = \sqrt{v_{2,x}^{2}+v_{2,y}^{2}}

v_{2} = \sqrt{\left(16\,\frac{m}{s} \right)^{2}+\left(29\,\frac{m}{s} \right)^{2}}

v_{2} \approx 33.121\,\frac{m}{s}

Finally, if m = 3.5\,kg, v_{1} \approx 25.060\,\frac{m}{s} and v_{2} \approx 33.121\,\frac{m}{s}, then the work done by the force is:

W_{F} = \frac{1}{2}\cdot (3.5\,kg)\cdot \left[\left(33.121\,\frac{m}{s} \right)^{2}-\left(25.060\,\frac{m}{s} \right)^{2}\right]

W_{F} = 820.745\,J

The work done by the force is 820.745 joules.

6 0
3 years ago
What is the distance that a car travels if it was brought to stop in 5 seconds and if it was traveling at 110 Km/h
Triss [41]

Answer:

Suppose that the acceleration is a constant, a.

a(t) = a.

To write the velocity equation, we must integrate over time, and the constant of integration will be equal to the initial velocity, in this case is 110km/h.

v(t) = a*t + 110km/h

And we know that at t = 5s, the car was brought to stop, so the velocity must be zero.

v(5s) = 0 = a*5s + 110km/h.

a = (110km/h)*(1/5s)

now we have that:

1 hour = 3600 seconds.

1km = 1000m

then:

110km/h = (110*1000/3600)m/s = 30.56 m/s

Then we have:

a = (-30.55 m/s)/5s = -6.11 m/s^2

Now the velocity equation is:

v(t) = -6.11m/s^2*t + 30.56m/s

To write the positon equation we must integrate over time again, we can get:

p(t) = (1/2)*(-6.11m/s^2)*t^2 + (30.56m/s)*t + p0

Where p0 is the initial position, here i will assume that is zero, because it does no really mater.

The total displacement of the car will be equal to p(5s)

p(5s) = (1/2)*(-6.11m/s^2)*(5s)^2 + (30.56m/s)*(5s) = 76.425 meters.

6 0
3 years ago
Other questions:
  • What’s the similarity between nuclear fission and nuclear fusion
    15·1 answer
  • What is responsible for the production of x ray emission at the cutoff wavelength?
    15·1 answer
  • The height of the Empire State Building is 318.00 meters. If a stone is dropped from the top of the building, what is the stone'
    13·1 answer
  • which of the following statements best explains how consumers determine growth in technological areas
    6·1 answer
  • Question 9
    6·1 answer
  • 1. If we want to increase the strength of an electromagnet, which 2 of
    5·1 answer
  • The mass of a hot-air balloon and its occupants is 381 kg (excluding the hot air inside the balloon). The air outside the balloo
    5·1 answer
  • Answer the question based on this waveform.
    8·1 answer
  • Vin Diesel jumps out of a plane. Gravity pulls on him with 184N of force and his parachute pushes him up with 82 N of force.
    8·1 answer
  • When the rudder moves to the left the plane will move to the right or left?
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!