1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kvasek [131]
3 years ago
11

The mass of a star can be determined by studying ___.

Physics
2 answers:
oksian1 [2.3K]3 years ago
7 0

Answer:

C. Binary star systems

Explanation:

Citrus2011 [14]3 years ago
4 0
Answer: C. Binary star systems

Let’s see your options:

a) The <em>color of the star</em>: the color is not used in calculating the mass of a star, because it has no relation to it. Think about a red supergiant and a red dwarf: they have the same color, but they are completely different stars, with respectively a big and a small mass.

b) <em>Kepler’s laws</em>: these laws can be applied in what is called the “approximation of 1 body”, which means that is assumed that one body has a much bigger mass than the other and can be considered at rest. This is the case of a star-planet system and the mass that can be calculated is that of the planet.

c)<em> Binary star systems</em>: these are the only cases in which is possible the direct measure of the mass of the stars. Binary systems are classified as follows:
- Visual binaries: each star can be resolved and the motion around the center of mass can be measured.
- Astrometric binaries: only one star is visible, but the presence of the companion can be inferred by the movement of the first star around the system’s center of mass.
- Eclipse binaries: the two stars are not resolved (separated), but the luminosity varies periodically when one star eclipses the other.
- Spectroscopic binaries: the two stars are not resolved, but their spectrum reveals that they are a binary system.
In all these cases we have a “two-body problem” that can be solved by changing system of reference: the motion of bodies 1 and 2 is equivalent to the motion of a body of mass equal to the system’s reduced mass \mu =  \frac{M_{1} \cdot M_{2}}{M_{1} + M_{2}} moving in the potential generated by the total mass (M1 + M2) considered at rest. Hence, we can determine the masses of the two stars. 
You might be interested in
A 2.7-kg block is released from rest and allowed to slide down a frictionless surface and into a spring. The far end of the spri
exis [7]

a) The speed of the block at a height of 0.25 m is 2.38 m/s

b) The compression of the spring is 0.25 m

c) The final height of the block is 0.54 m

Explanation:

a)

We can solve the problem by using the law of conservation of energy. In fact, the total mechanical energy (sum of kinetic+gravitational potential energy) must be conserved in absence of friction. So we can write:

U_i +K_i = U_f + K_f

where

U_i is the initial potential energy, at the top

K_i is the initial kinetic energy, at the top

U_f is the final potential energy, at halfway

K_f is the final kinetic energy, at halfway

The equation can be rewritten as

mgh_i + \frac{1}{2}mu^2 = mgh_f + \frac{1}{2}mv^2

where:

m = 2.7 kg is the mass of the block

g=9.8 m/s^2 is the acceleration of gravity

h_i = 0.54 is the initial height

u = 0 is the initial speed

h_f = 0.25 m is the final height of the block

v is the final speed when the block is at a height of 0.25 m

Solving for v,

v=\sqrt{u^2+2g(h_i-h_f)}=\sqrt{0+2(9.8)(0.54-0.25)}=2.38 m/s

b)

The total mechanical energy of the block can be calculated from the initial conditions, and it is

E=K_i + U_i = 0 + mgh_i = (2.7)(9.8)(0.54)=14.3 J

At the bottom of the ramp, the gravitational potential energy has become zero (because the final heigth is zero), and all the energy has been converted into kinetic energy. However, then the block compresses the spring, and the maximum compression of the spring occurs when the block stops: at that moment, all the energy of the block has been converted into elastic potential energy of the spring. So we can write

E=E_e = \frac{1}{2}kx^2

where

k = 453 N/m is the spring constant

x is the compression of the spring

And solving for x, we find

x=\sqrt{\frac{2E}{k}}=\sqrt{\frac{2(14.3)}{453}}=0.25 m

c)

If there is no friction acting on the block, we can apply again the law of conservation of energy. This time, the initial energy is the elastic potential energy stored in the spring:

E=E_e = 14.3 J

while the final energy is the energy at the point of maximum height, where all the energy has been converted into gravitational potetial energy:

E=U_f = mg h_f

where h_f is the maximum height reached. Solving for this quantity, we find

h_f = \frac{E}{mg}=\frac{14.3}{(2.7)(9.8)}=0.54 m

which is the initial height: this is correct, because the total mechanical energy is conserved, so the block must return to its initial position.

Learn more about kinetic and potential energy:

brainly.com/question/1198647

brainly.com/question/10770261

brainly.com/question/6536722

#LearnwithBrainly

5 0
3 years ago
Is the acceleration change or constnt?​
marin [14]
Change.

Acceleration means going faster
4 0
2 years ago
Which statement best describes a characteristic of gases?
salantis [7]
Assumes the shape and volume of its container 
<span>particles can move past one another</span>
8 0
3 years ago
A machine does 1500 joules of work in 30 second What is the power of the machine
lesya [120]
This is simple as power in watts is equal to joules per second so we can do 1500 joules divided by 30 seconds which equals 50 watts
8 0
3 years ago
Vision is blurred if the head is vibrated at 29 Hz because the vibrations are resonant with the natural frequency of the eyeball
Likurg_2 [28]

Answer:

k = 4422.35  KN/m

Explanation:

Given that

Frequency ,f= 29 Hz

m = 7.5 g

Natural frequency ω

ω = 2 π f

We also know that for spring mass system

ω ² m =k        

k=Spring constant

So we can say that

( 2 π f)² =  m k

By putting the values

(2 x π x 29)² = 7.5 x 10⁻³  k

33167.69 = 7.5 x 10⁻³  k

k=4422.35 x  10³ N/m

k = 4422.35  KN/m

Therefore spring constant will be 4422.35  KN/m

4 0
3 years ago
Other questions:
  • Can someone please help me with questions 5 and 6 you would be so amazing! :)
    14·1 answer
  • A record of travel along a straight path is as follows: 1. Start from rest with constant acceleration of 2.65 m/s2 for 17.0 s. 2
    6·1 answer
  • An ___ wave carries energy through matter
    10·1 answer
  • Is a bath tub renewable or not?
    5·2 answers
  • Four students measure the mass of a standard mass that has an accepted value of 150.0 g. They post their results in a table.
    15·1 answer
  • Which of the following is equivalent to 2,100 grams?
    7·2 answers
  • This rock known as balanced rock sits on a thin spike of rock in a canyon in Idaho. Explain the that keep the rock balanced on i
    11·2 answers
  • a pick up truck that has a mass of 500kg travels at 8 mph it hits a motor cycle with mass of 100kg. assuming momentum is conserv
    14·1 answer
  • Here's the cbse syllabus for magnetic effects of electric current​
    15·1 answer
  • A metre rule is used to measure a length. Which reading is shown to the nearest millimetre? A 0.7m B 0.76m C 0.761m D 0.7614m
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!