Answer:
A) Their creations change society.
Answer:

Explanation:
First we calculate the mass of the aire inside the rigid tank in the initial and end moments.
(i could be 1 for initial and 2 for the end)
State1


State2


So, the total mass of the aire entered is

At this point we need to obtain the properties through the tables, so
For Specific Internal energy,

For Specific enthalpy

For the second state the Specific internal Energy (6bar, 350K)

At the end we make a Energy balance, so

No work done there is here, so clearing the equation for Q



The sign indicates that the tank transferred heat<em> to</em> the surroundings.
Answer:
14.506°C
Explanation:
Given data :
flow rate of water been cooled = 0.011 m^3/s
inlet temp = 30°C + 273 = 303 k
cooling medium temperature = 6°C + 273 = 279 k
flow rate of cooling medium = 0.02 m^3/s
Determine the outlet temperature
we can determine the outlet temperature by applying the relation below
Heat gained by cooling medium = Heat lost by water
= ( Mcp ( To - 6 ) = Mcp ( 30 - To )
since the properties of water and the cooling medium ( water ) is the same
= 0.02 ( To - 6 ) = 0.011 ( 30 - To )
= 1.82 ( To - 6 ) = 30 - To
hence To ( outlet temperature ) = 14.506°C
Answer:
293 kg
Explanation:
Let's say the tension in each cable is Tb, Tc, and Td.
First, find the length of cable AD:
r = √(2² + 2² + 1²)
r = 3
Using similar triangles:
Tdx = 2/3 Td
Tdy = 2/3 Td
Tdz = 1/3 Td
Sum of the forces in the x direction:
∑F = ma
Tb − 2/3 Td = 0
Td = 3/2 Tb
Sum of the forces in the y direction:
∑F = ma
2/3 Td − Tc = 0
Td = 3/2 Tc
Sum of the forces in the z direction:
∑F = ma
1/3 Td − mg = 0
Td = 3mg
From the first two equations, we know Td is greater than Tb or Tc. So we need to set Td to 8.6 kN, or 8600 N.
8600 N = 3mg
m = 8600 N / (3 × 9.8 m/s²)
m ≈ 292.5 kg
Rounded to three significant figures, the maximum mass of the crate is 293 kg.