My guesses would be g. or F
To solve this problem we will apply the concepts related to the calculation of the surface, volume and error through the differentiation of the formulas given for the calculation of these values in a circle. Our values given at the beginning are


The radius then would be

And

PART A ) For the Surface Area we have that,

Deriving we have that the change in the Area is equivalent to the maximum error, therefore

Maximum error:


The relative error is that between the value of the Area and the maximum error, therefore:


PART B) For the volume we repeat the same process but now with the formula for the calculation of the volume in a sphere, so


Therefore the Maximum Error would be,



Replacing the value for the radius


And the relative Error



Explanation:
Suppose you want to shine a flashlight beam down a long, straight hallway. Just point the beam straight down the hallway -- light travels in straight lines, so it is no problem. What if the hallway has a bend in it? You could place a mirror at the bend to reflect the light beam around the corner. What if the hallway is very winding with multiple bends? You might line the walls with mirrors and angle the beam so that it bounces from side-to-side all along the hallway. This is exactly what happens in an optical fiber.
The light in a fiber-optic cable travels through the core (hallway) by constantly bouncing from the cladding (mirror-lined walls), a principle called total internal reflection. Because the cladding does not absorb any light from the core, the light wave can travel great distances.
However, some of the light signal degrades within the fiber, mostly due to impurities in the glass. The extent that the signal degrades depends on the purity of the glass and the wavelength of the transmitted light (for example, 850 nm = 60 to 75 percent/km; 1,300 nm = 50 to 60 percent/km; 1,550 nm is greater than 50 percent/km). Some premium optical fibers show much less signal degradation -- less than 10 percent/km at 1,550 nm.
1