Answer:
Explanation:
Far point = 17 cm . That means he can not see beyond this distance .
He wants to see at an object at 65 cm away . That means object placed at 65 has image at 17 cm by concave lens . Using lens formula
1 / v - 1 / u = 1 / f
1 / - 17 - 1 / - 65 = 1 / f
= 1 / 65 - 1 / 17
= - .0434 = 1 / f
power = - 100 / f
= - 100 x .0434
= - 4.34 D .
Answer:
Efficiency of a machine is how well the machine works and what the machine is capable of doing.
Mechanical advantage=Load/Effort.
720/180=4
Answer: Option (D) is the correct answer.
Explanation:
The given elements Li, C and F are all second period elements. So, when we move from left to right across a period then there occurs increase in number of valence electrons as there occurs increase in total number of electrons.
So, it means more electrons are added to the same energy level.
Thus, we can conclude that a property of valence electrons for each element is located in the same energy level is common in the given elements.
Answer:
A cosmic year is 365.25 days, some times called a side real year and is just the time it takes for us to go round the sun once.
A light year is the distance light travels in a year. Now light travels at about 186,262 miles a Second! Which is not slow by any ones book.
An experiment was conducted just after Christmas a few years ago. Two girls were selected from the audience and went into two phone boxes a few feet apart. They could only hear each other via the phones. The phone call went to a ground station about 200 miles away, then up to a geostationary coms satellite, back to a ground station 1/3 of the way around the world, then repeated, with a third satellite before being sent from another ground station back to London and the other phone box. We the audience could hear both sides of the conversation from both boxes. And could hear the delay between sending and receiving. So even at the speed of light, there was about 1.5 seconds of delay. So because distances in space are so vast that saying a star is x millions of miles away causes problems, you run out of zero’s! So our nearest other star is about 4.5 light years away. Our sun (our nearest start) is about 8 light minuets away. Varies slightly as our orbit is not 100% cirular.
I HOPE THIS IS HELPFUL.
Answer
given,
ω₁ = 0 rev/s
ω₂ = 6 rev/s
t = 11 s
Using equation of rotational motion
The angular acceleration is
ωf - ωi = α t
11 α = 6 - 0
= 0.545 rev/s²
The angular displacement
θ₁= ωi t + (1/2) α t²
θ₁= 0 + (1/2) (0.545)(11)^2
θ₁= 33 rev
case 2
ω₁ = 6 rev/s
ω₂ = 0 rev/s
t = 14 s
Using equation of rotational motion
The angular acceleration is
ωf - ωi = α t
14 α = 0 - 6
= - 0.428 rev/s²
The angular displacement
θ₂= ωi t + (1/2) α t²
θ₂= 6 x 14 + (1/2) (-0.428)(14)^2
θ₂= 42 rev
total revolution in 25 s is equal to
θ = θ₁ + θ₂
θ = 33 + 42
θ = 75 rev