Answer:
v = 31.3 m / s
Explanation:
The law of the conservation of stable energy that if there are no frictional forces mechanical energy is conserved throughout the point.
Let's look for mechanical energy at two points, the highest where the body is at rest and the lowest where at the bottom of the plane
Highest point
Em₀ = U = m g y
Lowest point
= K = ½ m v²
As there is no friction, mechanical energy is conserved
Em₀ =
m g y = ½ m v²
v = √ 2 g y
Where we can use trigonometry to find and
sin 30 = y / L
y = L sin 30
Let's replace
v = RA (2 g L sin 30)
Let's calculate
v = RA (2 9.8 100.0 sin30)
v = 31.3 m / s
Some things travel faster than the speed of light
Answer:
According to the standard big bang model of cosmology, time began together with the universe in a singularity approximately 14 billion years ago.
Explanation: the big bang
The kinetic energy of an object is given by
KE = 0.5mv²
where m is the mass and v is the velocity.
To calculate the change in kinetic energy...
Initial KE:
KEi = 0.5mVi²
where Vi is the initial velocity.
Final KE:
KEf = 0.5mVf²
where Vf is the final velocity.
ΔKE = KEf - KEi
ΔKE = 0.5mVi² - 0.5mVf²
ΔKE = 0.5m(Vf²-Vi²)
Given values:
m = 16kg
Vi = 25m/s
Vf = 20m/s
Plug in the given values and solve for ΔKE:
ΔKE = 0.5×16×(20²-25²)
ΔKE = -1800J
Answer:
Projectile motion is the motion of an object thrown (projected) into the air. After the initial force that launches the object, it only experiences the force of gravity. The object is called a projectile, and its path is called its trajectory.
Explanation: