At the player's maximum height, their velocity is 0. Recall that

which tells us the player's initial velocity
is

The player's height at time
is given by

so we find their airtime to be

Answer:
• riding on a Ferris wheel whose entrance and exit are the same
• walking around the block, starting from and ending at the same house
• running exactly one lap around a racetrack
Explanation:
Displacement simply means the.change in position of an object. In a situation whereby the initial and final position are thesame, the displacement will be zero.
The statements that describe a situation with a displacement of zero include:
• riding on a Ferris wheel whose entrance and exit are the same
• walking around the block, starting from and ending at the same house
• running exactly one lap around a racetrack
Answer:
-2040 m/s²
Explanation:
Taking toward the wall to be positive, the initial velocity is 10.1 m/s and the final velocity is -8.3426 m/s.
Average acceleration is the change in velocity over change in time.
a = Δv / Δt
a = (-8.3426 m/s − 10.1 m/s) / 0.00905 s
a = -2040 m/s²
Answer:
at the speed of light (
)
Explanation:
The second postulate of the theory of the special relativity from Einstein states that:
"The speed of light in free space has the same value c in all inertial frames of reference, where
"
This means that it doesn't matter if the observer is moving or not relative to the source of ligth: he will always observe light moving at the same speed, c.
In this problem, we have a starship emitting a laser beam (which is an electromagnetic wave, so it travels at the speed of light). The startship is moving relative to the Earth with a speed of 2.0*10^8 m/s: however, this is irrelevant for the exercise, because according to the postulate we mentioned above, an observer on Earth will observe the laser beam approaching Earth with a speed of
.