<h2>It will take 0.125 seconds to reach the net.</h2>
Explanation:
Initial speed, u = 34 ft/s = 10.36 m/s
Acceleration, a = -9.81 m/s²
Displacement, s = Final height - Initial height = 8 - 4 = 4 ft = 1.22 m
We have equation of motion, s = ut + 0.5 at²
Substituting
s = ut + 0.5 at²
1.22 = 10.36 x t + 0.5 x -9.81 x t²
4.905t² - 10.36 t + 1.22 = 0
t = 1.99 s or t = 0.125 seconds
Minimum time is 0.125 seconds.
It will take 0.125 seconds to reach the net.
The intensity of the magnetic force F experienced by a charge q moving with speed v in a magnetic field of intensity B is equal to

where

is the angle between the directions of v and B.
1) Re-arranging the previous formula, we can calculate the value of the magnetic field intensity. The charge is

. In this case, v and B are perpendicular, so

, therefore we have:

2) In this second case, the angle between v and B is

. The charge is now

, and the magnetic field is the one we found in the previous part, B=2.8 T, so we can find the intensity of the force experienced by this second charge:
There’s no picture so how r we supposed to answer it