Answer:
232.9m³ (Option b. is the closest answer)
Explanation:
Given:
Air pressure in the lab before the storm, P₁ = 1.1atm
Air volume in the lab before the storm, V₁ = 180m³
Air pressure in the lab during the storm P₂ = 0.85atm
Air volume in the lab before the storm, V₂ = ?
Applying Boyle's law: P₁V₁ = P₂V₂ (at constant temperature)



V₂ = 232.9m³
The air volume in the laboratory that would expand in order to make up for the large pressure difference outside is 232.9m³
Decomposers is the correct answer. ( I got your back bro)
Answer:
7772.72N
Explanation:
When u draw your FBD, you realize you have 3 forces (ignore the force the car produces), gravity, normal force and static friction. You also realize that gravity and normal force are in our out of the page (drawn with a frame of reference above the car). So that leaves you with static friction in the centripetal direction.
Now which direction is the static friction, assume that it is pointing inward so
Fc=Fs=mv²/r=1900*15²/55=427500/55=7772.72N
Since the car is not skidding we do not have kinetic friction so there can only be static friction. One reason we do not use μFn is because that is the formula for maximum static friction, and the problem does not state there is maximum static friction.
Answer:
4000m/s
Explanation:
It would be this because sound travels faster through a solid rather than a liquid.