Answer:
0.08 ft/min
Explanation:
To get the speed at witch the water raising at a given point we need to know the area it needs to fill at that point in the trough (the longitudinal section), which is given by the height at that point.
So we need to get the lenght of the sides for a height of 1 foot. Given the geometry of the trough, one side is the depth <em>d</em> and the other (lets call it <em>l</em>) is given by:

since the difference between the upper and lower base is the increase in the base and we are only at halft the height.
Now we can calculate the longitudinal section <em>A</em> at that point:

And the raising speed <em>v </em>of the water is given by:

where <em>q</em> is the water flow (1 cubic foot per minute).
The forward force you exert on the fish and your backward action will allow you to reach the shore.
<h3>
Newton's third law of motion</h3>
Newton's third law of motion states that for every action, there is an equal and opposite reaction.
Fa = -Fb
Let's assume the fish is held in the hook, this will give you the opportunity to throw the fish forward while still holding it.
When the the fish is thrown forward, you will move backwards with an equal force based on Newton's third law. Your backward momentum towards the shore will help to maintain equal linear momentum between you and the fish.
Thus, this forward force of the fish and your backward action will allow you to reach the shore.
Learn more Newton's third law of motion here: brainly.com/question/25998091
Answer:
F = M a
W = M g equivalent equation to express weight of object of mass M
M = W / g = 2867 N / 9.8 m/s^2 = 292.6 kg
Explanation:
Fgravity = G*(mass1*mass2)/D²
so, if you double one of the masses, what does that do to our equation ?
Fgravitynew = G*(2*mass1*mass2)/D²
due to the commutative property of multiplication
Fgravitynew = 2* G*(mass1*mass2)/D² = 2* Fgravity
so, the correct answer will be 2×45 = 90 units.
Answer:
(a) 40.6 degree
Explanation:
When refraction takes place from slab to water, the critical angle is 60 degree.
Use Snell's law
refractive index of water with respect to slab



μs = 1.536
Now for slab air interface, the critical angle is C.


1 / 1.536 = Sin C
C = 40.6 degree