Answer:
ΔL = 3.82 10⁻⁴ m
Explanation:
This is a thermal expansion exercise
ΔL = α L₀ ΔT
ΔT = T_f - T₀
where ΔL is the change in length and ΔT is the change in temperature
Let's reduce the length to SI units
L₀ = 90.5 mm (1m / 1000 mm) = 0.0905 m
let's calculate
ΔL = 25.10⁻⁶ 0.0905 (154.6 - (14.4))
ΔL = 3.8236 10⁻⁴ m
using the criterion of three significant figures
ΔL = 3.82 10⁻⁴ m
Answer: n=4
Explanation:
We have the following expression for the volume flow rate
of a hypodermic needle:
(1)
Where the dimensions of each one is:
Volume flow rate 
Radius of the needle 
Length of the needle 
Pressures at opposite ends of the needle
and 
Viscosity of the liquid 
We need to find the value of
whicha has no dimensions, and in order to do this, we have to rewritte (1) with its dimensions:
(2)
We need the right side of the equation to be equal to the left side of the equation (in dimensions):
(3)
(4)
As we can see
must be 4 if we want the exponent to be 3:
(5)
Finally:
(6)
The mass of an object on Earth is the same as its mass on the Moon. The weight is different.
Weight = m * g
Weight ( Moon ) = 40 kg * 1.6 m/s² = 64 N
If the mass of an object on Earth is 40 kg, its mass on the Moon is 40 kg and its weight on the Moon is 64 N.
I think the answer is <span>D. The magnetic field at point X points into the page, and the magnetic field at point Y points out of the page.</span>
Answer:
magnitude=34.45 m
direction=
Explanation:
Assuming the initial point P1 of this vector is at the origin:
P1=(X1,Y1)=(0,0)
And knowing the other point is P2=(X2,Y2)=(19.5,28.4)
We can find the magnitude and direction of this vector, taking into account a vector has a initial and a final point, with an x-component and a y-component.
For the magnitude we will use the formula to calculate the distance
between two points:
(1)
(2)
(3)
(4) This is the magnitude of the vector
For the direction, which is the measure of the angle the vector makes with a horizontal line, we will use the following formula:
(5)
(6)
(7)
Finding
:
(8)
(9) This is the direction of the vector