Answer:
The current through the circuit element will also be doubled.
Explanation:
The relationship between voltage and current of a circuit element is given by Ohm's Law. According to Ohm's Law:
Voltage = (Resistance)(Current)
If the resistance of the element is kept constant, the relation between Voltage and Current through that element becomes as follows:
Voltage = (Constant)(Current)
Voltage α Current
Thus, the voltage is directly proportional to the current for constant value of the resistance.
Therefore, when the voltage across a circuit element of constant resistance is doubled, <u>the current through the circuit element will also be doubled.</u>
1 is amplitude crest is 5 3 is wavelength. Your chart is confusing so that’s all I got
The resistance at operating temperature is R = V/I = 2.9 V / 0.23A = 12.61 ohmsT from R – R0 = Roalpha (T – T0), we find that:T = T0 + 1/alpha (R/R0 -1) = 20 degrees Celsius + (1/ 4.3 x 10^-3/K) (12.61 ohms/ 1.1 ohms – 1)T = 2453.40 degrees Celsius
Answer:
Superconducting materials can transport electrons with no resistance, and hence release no heat, sound, or other energy forms. Superconductivity occurs at a specific material's critical temperature (Tc). As temperature decreases, a superconducting material's resistance gradually decreases until it reaches critical temperature. At this point resistance drops off, often to zero, as shown in the graph at right.
Explanation: