Answer:
the tension in the string an instant before it broke = 34 N
Explanation:
Given that :
mass of the ball m = 300 g = 0.300 kg
length of the string r = 70 cm = 0.7 m
At highest point, law of conservation of energy can be expressed as :


The tension in the string is:

Thus, the tension in the string an instant before it broke = 34 N
Answer:
Explanation:
Given that,
Initial angular velocity is 0
ωo=0rad/s
It has angular velocity of 11rev/sec
ωi=11rev/sec
1rev=2πrad
Then, wi=11rev/sec ×2πrad
wi=22πrad/sec
And after 30 revolution
θ=30revolution
θ=30×2πrad
θ=60πrad
Final angular velocity is
ωf=18rev/sec
ωf=18×2πrad/sec
ωf=36πrad/sec
a. Angular acceleration(α)
Then, angular acceleration is given as
wf²=wi²+2αθ
(36π)²=(22π)²+2α×60π
(36π)²-(22π)²=120πα
Then, 120πα = 8014.119
α=8014.119/120π
α=21.26 rad/s²
Let. convert to revolution /sec²
α=21.26/2π
α=3.38rev/sec
b. Time Taken to complete 30revolution
θ=60πrad
∆θ= ½(wf+wi)•t
60π=½(36π+22π)t
60π×2=58πt
Then, t=120π/58π
t=2.07seconds
c. Time to reach 11rev/sec
wf=wo+αt
22π=0+21.26t
22π=21.26t
Then, t=22π/21.26
t=3.251seconds
d. Number of revolution to get to 11rev/s
∆θ= ½(wf+wo)•t
∆θ= ½(0+11)•3.251
∆θ= ½(11)•3.251
∆θ= 17.88rev.
Answer:
Magnitude of the magnetic field inside the solenoid near its centre is 1.293 x 10⁻³ T
Explanation:
Given;
number of turns of solenoid, N = 269 turn
length of the solenoid, L = 102 cm = 1.02 m
radius of the solenoid, r = 2.3 cm = 0.023 m
current in the solenoid, I = 3.9 A
Magnitude of the magnetic field inside the solenoid near its centre is calculated as;

Where;
μ₀ is permeability of free space = 4π x 10⁻⁷ m/A

Therefore, magnitude of the magnetic field inside the solenoid near its centre is 1.293 x 10⁻³ T
A land form or land mass to be created over a long period of time
The rate in witch ditermans the speed or vibration of the movment under the waves witch couses vibrational freequencys to be disrupted.