The charge balance equation for an aqueous solution of H₂CO₃ that ionizes to HCO₃⁻ and CO₃⁻² is [HCO₃⁻] = 2[CO₃⁻²] + [H⁺] + [OH⁻]
<h3>What is Balanced Chemical Equation ?</h3>
The balanced chemical equation is the equation in which the number of atoms on the reactant side is equal to the number of atoms on the product side in an equation.
The equation for aqueous solution of H₂CO₃ is
H₂CO₃ → H₂O + CO₂
The charge balance equation is
[HCO₃⁻] = 2[CO₃⁻²] + [H⁺] + [OH⁻]
Thus from the above conclusion we can say that The charge balance equation for an aqueous solution of H₂CO₃ that ionizes to HCO₃⁻ and CO₃⁻² is [HCO₃⁻] = 2[CO₃⁻²] + [H⁺] + [OH⁻]
Learn more about the Balanced Chemical equation here: brainly.com/question/26694427
#SPJ4
The best and most correct answer among the choices provided by your question is all of the above.
All of the choices given are the best ways to explain a nuclear reaction.
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
Answer:
.056
Explanation:
H+=10^-pH
- Hope that helps! Please let me know if you need further explanation.
Answer:
173.83 mmHg is the vapor pressure of a ethylene glycol solution.
Explanation:
Vapor pressure of water at 65 °C=
Vapor pressure of the solution at 65 °C= 
The relative lowering of vapor pressure of solution in which non volatile solute is dissolved is equal to mole fraction of solute in the solution.
Mass of ethylene glycol = 22.37 g
Mass of water in a solution = 82.21 g
Moles of water=
Moles of ethylene glycol=



173.83 mmHg is the vapor pressure of a ethylene glycol solution.