Answer:
The Aluminium electron configuration will be 1s^22s^22p^63s^23p^1. The configuration notation provides an easy way for scientists to write and communicate how electrons are arranged around the nucleus of an atom. This makes it easier to understand and predict how atoms will interact to form chemical bonds.
Answer:
Zero to the power of zero, denoted by 00, is a mathematical expression with no agreed-upon value. The most common possibilities are 1 or leaving the expression undefined, with justifications existing for each, depending on context
Explanation:
Answer : The heat required is, 1904 calories.
Explanation :
The process involved in this problem are :

The expression used will be:
![\Delta H=m\times \Delta H_{fusion}+[m\times c_{p,l}\times (T_{final}-T_{initial})]](https://tex.z-dn.net/?f=%5CDelta%20H%3Dm%5Ctimes%20%5CDelta%20H_%7Bfusion%7D%2B%5Bm%5Ctimes%20c_%7Bp%2Cl%7D%5Ctimes%20%28T_%7Bfinal%7D-T_%7Binitial%7D%29%5D)
where,
m = mass of ice = 17 g
= specific heat of liquid water = 
= enthalpy change for fusion = 
Now put all the given values in the above expression, we get:
![\Delta H=17g\times 80.0cal/g+[17g\times 1cal/g^oC\times (32.0-0)^oC]](https://tex.z-dn.net/?f=%5CDelta%20H%3D17g%5Ctimes%2080.0cal%2Fg%2B%5B17g%5Ctimes%201cal%2Fg%5EoC%5Ctimes%20%2832.0-0%29%5EoC%5D)

Therefore, the heat required is, 1904 calories.
The answer is 0.0171468704904. We assume you are converting between moles Mg(OH)2 and gram. This compound is also known as Magnesium Hydroxide. 1 mole<span> is equal to </span>1 moles<span> Mg(OH)2, or 58.31968 grams.</span>
Answer:The first thing you need to do here is to use the molarity of the solution to determine how many moles of sodium chloride you have in your sample.
As you know, molarity tells you the number of moles of solute, which in your case is sodium chloride, present in "1 L" of solution. This means that a "0.75 M" sodium chloride solution will contain 0.75 moles of sodium chloride for every "1 L" of solution.
Explanation: