Answer:
A motion diagram represents the motion of an object by displaying its location at various equally spaced times on the same diagram. Motion diagrams are a pictorial description of an object's motion. They show an object's position and velocity initially and present several spots in the center of the diagram.
Explanation:
Before we find impulse, we need to find the initial and final momentum of the ball.
To find the momentum of the ball before it hit the floor, we need to figure out its final velocity using kinematics.
Values we know:
acceleration(a) - 9.81m/s^2 [down]
initial velocity(vi) - 0m/s
distance(d) - 1.25m [down]
This equation can be used to find final velocity:
Vf^2 = Vi^2 + 2ad
Vf^2 = (0)^2 + (2)(-9.81)(-1.25)
Vf^2 = 24.525
Vf = 4.95m/s [down]
Now we need to find the velocity the ball leaves the floor at using the same kinematics concept.
What we know:
a = 9.81m/s^2 [down]
d = 0.600m [up]
vf = 0m/s
Vf^2 = Vi^2 + 2ad
0^2 = Vi^2 + 2(-9.81)(0.6)
0 = Vi^2 + -11.772
Vi^2 = 11.772
Vi = 3.43m/s [up]
Now to find impulse given to the ball by the floor we find the change in momentum.
Impulse = Momentum final - momentum initial
Impulse = (0.120)(3.43) - (0.120)(-4.95)
Impulse = 1.01kgm/s [up]
Yes light travels at 3.00
Answer:
<h3>It's called Resistance! </h3>
Explanation:
If the ratio is constant over a wide range of voltages, the material is said to "ohmic" material.
Hope it helps!