The echo is heard 2.80 s later, this means this is the time the sound takes to travel to the reflecting object and then back to us. So, during this time, the sound wave has covered the distance L between us and the object twice:

The speed of the sound wave is:

, and since it is moving by uniform motion, we can find the distance covered by the wave using

And we said this corresponds to twice the distance between us and the reflecting object, so:

so, the object is 480 meters away.
Answer:
so the speed will increase by 1.44 times then the initial speed if the distance is increased to double
Explanation:
As we know that the air friction or resistance due to air is neglected then we can use the equation of kinematics here

since we released it from rest so we have

so here we have

now if the distance is double then we have

now from above two equations we can say that

so the speed will increase by 1.44 times then the initial speed if the distance is increased to double
Answer:
A pi bond
Explanation:
A pi bond is a type of covalent bond that results from the formation of a molecular orbital by the side-to-side overlap of atomic orbitals along a plane perpendicular to a line connecting the nuclei of the atoms.
Ignoring air resistance, the Kinetic energy before hitting the ground will be equal to the potential energy of the Piton at the top of the rock.
So we have 1/2 MV^2 = MGH
V^2 = 2GH
V = âš2GH
V = âš( 2 * 9.8 * 325)
V = âš 6370
V = 79.81 m/s
Answer:
536,904 J/s
Explanation:
The energy output from motor is the input energy in the machine.
We know that efficiency is percentage energy ouput to energy input, and expressed as

Where n and E represent efficiency and energy respectively, subscripts o and i represent output and input respectively. Since for the machine we have the input energy then the output will be the product of efficiency and input energy
Energy output=0.6*1200 hp=720 hp
Converting hp to J/s we multiply by 745.7
Energy is 720*745.7=536,904 J/s