Answer:
Star A is brighter than Star B by a factor of 2754.22
Explanation:
Lets assume,
the magnitude of star A = m₁ = 1
the magnitude of star B = m₂ = 9.6
the apparent brightness of star A and star B are b₁ and b₂ respectively
Then, relation between the difference of magnitudes and apparent brightness of two stars are related as give below:
The current magnitude scale followed was formalized by Sir Norman Pogson in 1856. On this scale a magnitude 1 star is 2.512 times brighter than magnitude 2 star. A magnitude 2 star is 2.512 time brighter than a magnitude 3 star. That means a magnitude 1 star is (2.512x2.512) brighter than magnitude 3 bright star.
We need to find the factor by which star A is brighter than star B. Using the equation given above,
Thus,
It means star A is 2754.22 time brighter than Star B.
Answer:
I think it is 5.6. This is my answer
Given:
mass: 100 kg
height: 500 m
1 kJ = 1000 J
gravity = 9.8 m/s²
velocity before impact: v = √2gh ; v = √2 * 9.8 m/s² * 500 m ; v = 98.99494 m/s
KE = 1/2 m v²
KE = 1/2 * 100 kg * (98.99494 m/s)²
KE = 490,000 J
Pls. see attachment.
Answer:
This is the answer: The speed of a proton is about 5.0 × 10⁵ m/s
Explanation:
Because of the speeds of protons! :D