highest energy level to the ground state.
Explanation:
The transition from the highest energy level to the ground state.
An electron has a discrete amount of energy accrued to it in any energy level it belongs to.
Electrons can transition between one energy level or the other.
- When electrons change state, they either release or absorb energy.
- When an atom absorbs energy, they move from their ground to final state which is consistent with the energy of the final state.
- When electrons release energy, they move from excited state to their ground state.
- Electrons will release the greatest amount of energy when they move from the highest energy level to the ground state.
Learn more:
Neil Bohr brainly.com/question/4986277
#learnwithBrainly
mass = 177 x 1.0 g/mL= 177 g mass ethanol = 177 x 10.6/100 = 18.8 g moles = 18.8 g/46.069 g/mol = 0.408 1367 kJ/mol x 0.408 mol= 557.9 kJ
Answer:
<h3>since erosion is unavoidable the problem becomes discovering ways to prevent it. present beach erosion prevention methods include sand bags,vegetation,seawalls,sand dunes,and sand fences.</h3>
Mechanical energy (ME) is the sum of potential energy (PE) and kinetic energy (KE). When the toy falls, energy is converted from PE to KE, but by conservation of energy, ME (and therefore PE+KE) will remain the same.
Therefore, ME at 0.500 m is the same as ME at 0.830 m (the starting point). It's easier to calculate ME at the starting point because its just PE we need to worry about (but if we wanted to we could calculate the instantaneous PE and KE at 0.500 m too and add them to get the same answer).
At the start:
ME = PE = mgh
ME = 0.900 (9.8) (0.830)
ME = 7.32 J
TRUE!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!