Answer:
The answer is A
Explanation:
When a rockets thrusters push on the ground the ground pushes back on the rocket with equal force in the opposite direction. Hence the rocket takes off.
Newtons third law of motion states, for every action there is an equal and opposite reaction.
Answer:
The answer to your question is: D.
Explanation:
Distance refers to the amount of space between two points, it is a scalar quantity.
Displacement refers to the space between two points, measure from the minimum path linking them, it is a vector quantity.
I'm not agree with these answers, because the total distance is approximately 500km.
A) The distance traveled is 300 km. This answer is not correct.
B) Distance is 300 km and displacement is 0 km. This answer is not correct because the displacement is also 500 km.
C) Distance is 300 km/hour and displacement is 300 km.
300 km/h is a measure of speed not of distance, this option is wrong.
D) Both distance traveled and displacement are 300 km. I think this is the correct answer because distance and displacement measure the same. but I think both measure 500 km.
Answer:
Option C. 210 J.
Explanation:
From the question given above, the following data were obtained:
Mass (m) = 0.75 Kg
Height (h) = 12 m
Velocity (v) = 18 m/s
Acceleration due to gravity (g) = 9.8 m/s²
Total Mechanical energy (ME) =?
Next, we shall determine the potential energy of the plane. This can be obtained as follow:
Mass (m) = 0.75 Kg
Height (h) = 12 m
Acceleration due to gravity (g) = 9.8 m/s²
Potential energy (PE) =?
PE = mgh
PE = 0.75 × 9.8 × 12
PE = 88.2 J
Next, we shall determine the kinetic energy of the plane. This can be obtained as follow:
Mass (m) = 0.75 Kg
Velocity (v) = 18 m/s
Kinetic energy (KE) =?
KE = ½mv²
KE = ½ × 0.75 × 18²
KE = ½ × 0.75 × 324
KE = 121.5 J
Finally, we shall determine the total mechanical energy of the plane. This can be obtained as follow:
Potential energy (PE) = 88.2 J
Kinetic energy (KE) = 121.5 J
Total Mechanical energy (ME) =?
ME = PE + KE
ME = 88.2 + 121.5
ME = 209.7 J
ME ≈ 210 J
Therefore, the total mechanical energy of the plane is 210 J.