Explanation:
Below is an attachment containing the solution.
Answer:

Explanation:
Given data
Frequency f=90 Hz
To find
First three overtones of bassoon
Solution
The fundamental frequency of bassoon is found by substituting n=1 in below equation
f=v/λ=nv/2L

The first overtone of bassoon is found by substituting n=2
So
The second overtone of bassoon is found by substituting n=3
So

The third overtone of bassoon is found by substituting n=4
So

Answer: 52%
Explanation:
1W = 1 J/s
motor input is 10000 J/s
Potential energy change
PE = 955(9.81)(25.0) = 234,213.75
power needed to change the PE in that time
P = 234,213.75/ 45 = 5,204.75 Watts
motor is 5204.75 / 10000 = 0.520475 or 52% efficient
(a) The magnitude and direction of the net force on the crate while it is on the rough surface is 36.46 N, opposite as the motion of the crate.
(b) The net work done on the crate while it is on the rough surface is 23.7 J.
(c) The speed of the crate when it reaches the end of the rough surface is 0.45 m/s.
<h3>Magnitude of net force on the crate</h3>
F(net) = F - μFf
F(net) = 280 - 0.351(92 x 9.8)
F(net) = -36.46 N
<h3>Net work done on the crate</h3>
W = F(net) x L
W = -36.46 x 0.65
W = - 23.7 J
<h3>Acceleration of the crate</h3>
a = F(net)/m
a = -36.46/92
a = - 0.396 m/s²
<h3>Speed of the crate</h3>
v² = u² + 2as
v² = 0.845² + 2(-0.396)(0.65)
v² = 0.199
v = √0.199
v = 0.45 m/s
Thus, the magnitude and direction of the net force on the crate while it is on the rough surface is 36.46 N, opposite as the motion of the crate.
The net work done on the crate while it is on the rough surface is 23.7 J.
The speed of the crate when it reaches the end of the rough surface is 0.45 m/s.
Learn more about work done here: brainly.com/question/8119756
#SPJ1
Answer:
The resulting magnetic field is 5.021 x 10⁻⁵ T
Explanation:
Given;
current in the lightening bolt, I = 11800 A
distance from the bolt, r = 47 m
permeability of free space, μ₀ = 1.25664 × 10⁻⁶ T· m/A
Assume lightening bolt as long straight conductor, then the resulting magnetic field will be calculated as follows;

where;
B is the resulting magnetic field
I is the current in the bolt
r is the distance from the bolt
Substitute the given values and calculate B

Thus, the resulting magnetic field is 5.021 x 10⁻⁵ T