Answer: protons
Explanation:
The atomic # identifies the amount of protons in an atom
Answer:
Mo(CO)5 is the intermediate in this reaction mechanism.
Explanation:
The reaction mechanism describes the sequence of elementary reactions that must occur to go from reactants to products. Reaction intermediates are formed in one step and then consumed in a later step of the reaction mechanism.
In this reaction mechanism, Mo(CO)5 is the product of 1st reaction and then it is used as a reactant in 2nd reaction. So, Mo(CO)5 is the reaction intermediates.
The overall balanced equation would be,
Mo(CO)6 + P(CH3) ↔ CO + Mo(CO)5 + P(CH3)3
The sun is my black hole and technically is also the way that urnanus comes in contact with suck m wee wee
There are 1.93 x 10²⁴ particles
<h3>Further explanation</h3>
Given
3.2 moles of Neon gas
Required
Number of particles
Solution
The mole is the number of particles(molecules, atoms, ions) contained in a substance
<em>1 mol = 6.02.10²³ particles
</em>
Can be formulated
N=n x No
N = number of particles
n = mol
No = Avogadro's = 6.02.10²³
So the number of particles for 3.2 moles :
N = 3.2 x 6.02.10²³
N = 1.93 x 10²⁴
or
we can describe it using Avogadro's number conversion factor

A) Energy is released during the formation of the bond.
Explanation:
During the formation of a chemical bonds between two hydrogen atoms, energy is always released during the formation of this bond type.
Bond formation process is usually exothermic and energy is released during the formation of the bond.
- Bond breaking process is an endothermic process in which energy is absorbed from the surrounding.
- Whenever a bond is broken, the bond energy value is positive but when a bond is formed, the bond energy value is given a negative sign.
For a bond formation process in which hydrogen atoms are bonded covalently, energy is usually released.
Learn more:
Enthalpy changes brainly.com/question/10567109
#learnwithBrainly