Answer:
The ratio [A-]/[HA] increase when the pH increase and the ratio decrease when the pH decrease.
Explanation:
Every weak acid or base is at equilibrium with its conjugate base or acid respectively when it is dissolved in water.
⇄ 
This equilibrium depends on the molecule and it acidic constant (Ka). The Henderson-Hasselbalch equation,
![pH = pKa + Log \frac{[A^{-}]}{[HA]}](https://tex.z-dn.net/?f=pH%20%3D%20pKa%20%2B%20Log%20%5Cfrac%7B%5BA%5E%7B-%7D%5D%7D%7B%5BHA%5D%7D)
shows the dependency between the pH of the solution, the pKa and the concentration of the species. If the pH decreases the concentration of protons will increase and the ratio between A- and AH will decrease. Instead, if the pH increases the concentration of protons will decreases and the ratio between A- and AH will increase.
It is OH- (hydroxide ion)
From each drop-down menu, a solid has (a definite volume and a definite shape), a Liquid has (a definite volume) and gas has ( non of the above)
<h3>The features of different states of Matter:</h3>
Matter is defined as anything that has weight and occupies space.
There are three states of matter that is in existence which include:
- Solid: The particles of solid are closely packed together and vibrate around fixed axes. That is why they have a definite shape and volume.
- Liquid: The particles of liquid, though attracted to each other,move freely over each other. That is why they have definite volume but not a definite shape.
Therefore, a liquid occupies the shape of its container.
- Gas: The particles of gas contain scattered molecules that are dispersed across a given volume.
Therefore, a gas neither has a definite shape nor volume.
Learn more about matter here:
brainly.com/question/3998772
Answer:
10.35
Explanation:
multiply moles by molar mass from periodic table