Answer:False
Explanation:
Work is being done on a body when it causes displacement of body on the application of force

When we pull the door by a force it causes zero displacements of the door. So we can say that work done on it is zero.
Thus the above-given statement is false
Answer:

Explanation:
Given:
- mass of John,

- mass of William,

- length of slide,

(A)
height between John and William, 
<u>Using the equation of motion:</u>

where:
v_J = final velocity of John at the end of the slide
u_J = initial velocity of John at the top of the slide = 0
Now putting respective :


<u>Now using the law of conservation of momentum at the bottom of the slide:</u>
<em>Sum of initial momentum of kids before & after collision must be equal.</em>

where: v = velocity with which they move together after collision

is the velocity with which they leave the slide.
(B)
- frictional force due to mud,

<u>Now we find the force along the slide due to the body weight:</u>



<em><u>Hence the net force along the slide:</u></em>

<em>Now the acceleration of John:</em>



<u>Now the new velocity:</u>



Hence the new velocity is slower by

<span>To begin, the mouse walks from 5 to 12 cm, for a displacement of 7 cm. Next, it walks 8 cm in the opposite direction, for a total displacement of (7 + [-8]) or (-1) cm. This leaves the mouse on 4 cm, and then it walks from there to the 7cm location, for a displacement of 7-4 or +3 cm. Adding 3cm to -1cm gives a final displacement of +2cm.</span>
Answer:29.627 m
Explanation:
Given
Initial velocity of life preserver(u) is 1.6 m/s
it takes 2.3 s to reach the water
using equation of motion
v=u+at

v=24.163 m/s
Let s be the height of life preserver



s=29.627 m
Answer:
a
Explanation:
as the copper wire is very dangerous so now if these two thing happens then it would easily help the current flows through it so it might be a little bit easy for the current to flow through it