Answer:
(b) In ideal condition we neglect mass of spring but in real springs mass of spring adds another factor to its time period.
since we are adding a factor of mass to the system, and frequency being inversely proportional to squared root of mass, we can come to a general conclusion that it effectively reduces the natural frequency .
Explanation:
kindly check the attachment for explanation.
Melting, as igneous rock is magma or lava that has cooled and hardened.
Answer:
FN is the forces acting on a body. When the body is at rest, the net force formula is given by, FNet = Fa + Fg.
Im in 7th and thats all I know so I hope it's enough
A steel piano wire, of length 1.150 m and mass of 4.80 g is stretched under a tension of 580.0 N.the speed of transverse waves on the wire would be 372.77 m/s
<h3>What is a sound wave?</h3>
It is a particular variety of mechanical waves made up of the disruption brought on by the movements of the energy. In an elastic medium like the air, a sound wave travels through compression and rarefaction.
For calculating the wave velocity of the sound waves generated from the piano can be calculated by the formula
V= √F/μ
where v is the wave velocity of the wave travel on the string
F is the tension in the string of piano
μ is the mass per unit length of the string
As given in question a steel piano wire, of length 1.150 m and mass of 4.80 g is stretched under a tension of 580.0 N.
The μ is the mass per unit length of the string would be
μ = 4.80/(1.150×1000)
μ = 0.0041739 kg/m
By substituting the respective values of the tension on the string and the density(mass per unit length) in the above formula of the wave velocity
V= √F/μ
V=√(580/0.0041739)
V = 372.77 m/s
Thus, the speed of transverse waves on the wire comes out to be 372.77 m/s
Learn more about sound waves from here
brainly.com/question/11797560
#SPJ1