1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Slav-nsk [51]
3 years ago
5

How do you calculate average speed?

Physics
2 answers:
Wittaler [7]3 years ago
8 0

Answer:

\huge \boxed{S=\frac{d}{t} }

\rule[225]{225}{2}

Step-by-step explanation:

Speed is the rate at which an object covers a distance in a period of time.

The formula to find speed is as follows:

\Longrightarrow \ \  \displaystyle \sf speed =\frac{distance \ travelled }{time \ taken}

\Longrightarrow \ \  \displaystyle S =\frac{d }{t}

You divide the distance travelled by the time taken to find the speed.

\rule[225]{225}{2}

Mila [183]3 years ago
4 0

Divide
       (the distance covered in some period of time)
by
       (the time taken to cover the distance).

The quotient is the average speed during that period of time.
You might be interested in
If a basball is project upwards from the ground level with an initial velovaity of 32 feet per second, then it's height is a fun
inessss [21]

Answer:

Maximum height reached by the ball is 32 meters.

Explanation:

It is given that,

If a baseball is project upwards from the ground level with an initial velocity of 32 feet per second, then it's height is a function of time. The equation is given as :

s=-8t^2+32t...........(1)

t is the time taken

s is the height attained as a function of time.

Maximum height achieved can be calculated as :

\dfrac{ds}{dt}=0

\dfrac{d(-8t^2+32t)}{dt}=0

-16 t + 32 = 0

t = 2 seconds

Put the value of t in equation (1) as :

s=-8(2)^2+32(2)

s = 32 meters

So, the maximum height reached by the ball is 32 meters. Hence, this is the required solution.

6 0
4 years ago
If stellar parallax can be measured to a precision of about 0.01 arcsec using telescopes on the Earth to observe stars, to what
marin [14]

Answer:

It corresponds to a distance of 100 parsecs away from Earth.

Explanation:

The angle due to the change in position of a nearby object against the background stars it is known as parallax.

It is defined in a analytic way as it follows:

       

\tan{p} = \frac{1AU}{d}

Where d is the distance to the star.

p('') = \frac{1}{d} (1)  

Equation (1) can be rewritten in terms of d:

d(pc) = \frac{1}{p('')} (2)

Equation (2) represents the distance in a unit known as parsec (pc).

The parallax angle can be used to find out the distance by means of triangulation. Making a triangle between the nearby star, the Sun and the Earth (as is shown in the image below), knowing that the distance between the Earth and the Sun (150000000 Km), is defined as 1 astronomical unit (1AU).

For the case of   (p('') = 0.01):

d(pc) = \frac{1}{0.01}

d(pc) = 100

Hence, it corresponds to a distance of 100 parsecs away from Earth.

<em>Summary:</em>

Notice how a small parallax angle means that the object is farther away.

Key terms:

Parsec: Parallax of arc second

7 0
3 years ago
An artificial satellite is in a circular orbit around a planet of radius r= 2.05 x103 km at a distance d 310.0 km from the plane
lubasha [3.4K]

Answer:

\rho = 12580.7 kg/m^3

Explanation:

As we know that the satellite revolves around the planet then the centripetal force for the satellite is due to gravitational attraction force of the planet

So here we will have

F = \frac{GMm}{(r + h)^2}

here we have

F =\frac {mv^2}{(r+ h)}

\frac{mv^2}{r + h} = \frac{GMm}{(r + h)^2}

here we have

v = \sqrt{\frac{GM}{(r + h)}}

now we can find time period as

T = \frac{2\pi (r + h)}{v}

T = \frac{2\pi (2.05 \times 10^6 + 310 \times 10^3)}{\sqrt{\frac{GM}{(r + h)}}}

1.15 \times 3600 = \frac{2\pi (2.05 \times 10^6 + 310 \times 10^3)}{\sqrt{\frac{(6.67 \times 10^{-11})(M)}{(2.05 \times 10^6 + 310 \times 10^3)}}}

M = 4.54 \times 10^{23} kg

Now the density is given as

\rho = \frac{M}{\frac{4}{3}\pi r^3}

\rho = \frac{4.54 \times 10^{23}}{\frac{4}[3}\pi(2.05 \times 10^6)^3}

\rho = 12580.7 kg/m^3

8 0
3 years ago
If a runner has a speed of 8.66m/s and runs for 46.2s what distance is covered? tv = d
kati45 [8]

Answer:

\text{Using the formula: }v=\frac{d}{t}\\\therefore vt=d\\\text{Plug and chug:}46.2(8.66)=400.092\text{ metres}

6 0
3 years ago
A wave has a velocity of 24 m/s and a period of 3.0 s. Calculate the wavelength of the wave.
Katyanochek1 [597]

Velocity (unit:m/s) of the wave is given with the formula:

v=f∧,

where f is the frequency which tells us how many waves are passing a point per second (unit: Hz) and ∧ is the wavelength, which tells us the length of those waves in metres (unit:m)

f=1/T , where T is the period of the wave.

In our case: f=1/3

∧=v/f=24m/s/1/3=24*3=72m

5 0
3 years ago
Other questions:
  • Why was the idea of continental drift not initially accepted by many other scientists and the general public at the time?
    6·1 answer
  • Car A travels from New York to Miami at a speed of 25 m/s. Car B travels from New York to Chicago, also at a speed of 25 m/s. Ar
    14·1 answer
  • Which is a characteristic of thermal energy transfer through convection
    15·1 answer
  • An iron ball and an aluminum ball of mass 100 g each are heated to the same temperature and then cooled to a temperature of 20°
    15·1 answer
  • What type of rock this is
    8·1 answer
  • The buildup of charges on an object is called
    10·2 answers
  • How do you think the formation of new stars is related
    15·1 answer
  • If a ball is given an acceleration of 3.0 meters/second^2 while being pushed with a force of 0.75 newtons, what is the mass of t
    11·2 answers
  • Jenna made an electric circuit as seen in the picture. She placed a thermometer near her light bulb. After the light bulb was tu
    9·2 answers
  • 2. If you are 5'10" tall, that is, 5 feet 10 inches, what is your height in meters? (2 54 cm = 1.00 in)
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!