Explanation:
We have,
Mass of an object is 0.5 kg
Force constant of the spring is 157 N/m
The object is released from rest when the spring is compressed 0.19 m.
(A) The force acting on the object is given by :
F = kx

(B) The force is simply given by :
F = ma
a is acceleration at that instant

Average speed is worked out from dividing distance by time.
Answer:
2.87m
Explanation:
Using the law of gravitation to solve this question
F = GMm/r²
G is the gravitational constant
M and m are the masses
r is the distance between the masses
Substitute the given values
G = 6.67×10^-11 m³/kgs²
M =8.8 x 10^6 kg
m = 5.6 x 10^5 kg
F =440N
400 = 6.67×10^-11×8.8 x 10^6 ×5.6 x 10^5/r²
400r² = 328.698×10
400r² = 3286.98
r² = 3286.98/400
r² = 8.21745
r = √8.21745
r = 2.87m
Hence the distance of separation is 2.87m
For a wave is described by y=0.0200 sin (kx - ωt) , where , ω = 3.62 rad/s, x and y are in meters, and t is in seconds, the wavelength = 2.978
<h3>How to solve for the wavelength</h3>
What is wave speed?
This is used to refer to the speed at which a wave is moving. It is the product of frequency and wave number
Given data
y=0.0200 sin (kx - ωt)
ω = 3.62 rad/s
y are in meters
t is in seconds
k = 2.11 rad/m
k = wavenumber = 2 * pi / wavelength
wavelength = 2 * pi / wavenumber
wavelength = 2 * pi / 2.11
wavelength = 2.978
Read more on wavelength here
brainly.com/question/10728818
#SPJ4