The answer is 4.0 kg since the flywheel comes to rest the
kinetic energy of the wheel in motion is spent doing the work. Using the
formula KE = (1/2) I w².
Given the following:
I = the moment of inertia about the
axis passing through the center of the wheel; w = angular velocity ; for the
solid disk as I = mr² / 2 so KE = (1/4) mr²w². Now initially, the wheel is spinning
at 500 rpm so w = 500 * (2*pi / 60) rad / sec = 52.36 rad / sec.
The radius = 1.2 m and KE = 3900 J
3900 J = (1/4) m (1.2)² (52.36)²
m = 3900 J / (0.25) (1.2)² (52.36)²
m = 3.95151 ≈ 4.00 kg
Answer:
ratio =0.3075 T
Explanation:
The magnetic field B creates a force on a moving charge such that

Now this causes a centripetal acceleration

so
...........(i)
...............(ii)
If accelerating potential V is same and then kinetic energy equals the potential energy difference

put these value in equation (ii)
simplifying we get

for same location r will be same in both case
..............(iii)
..........(iv)
dividing (iv) and (iii) equation we get



so on solving we get
=0.3075 T
Explanation:
A force is a push or pull upon an object resulting from the object's interaction with another object. Whenever there is an interaction between two objects, there is a force upon each of the objects. When the interaction ceases, the two objects no longer experience the force.
Answer:
T = 8.55 N
Explanation:
When string makes an angle 40 degree with the vertical then it will have two forces on it
1) gravitational force (mg)
2) Tension force in string (T)
now we know that net force towards the center of the path is known as centripetal force and it is given as




