Answer:
This metal has a specific heat of 0.9845J/ g °C
Explanation:
Step 1: Given data
q = m*ΔT *Cp
⇒with m = mass of the substance
⇒with ΔT = change in temp = final temperature T2 - initial temperature T1
⇒with Cp = specific heat (Cpwater = 4.184J/g °C) (Cpmetam = TO BE DETERMINED)
Step 2: Calculate specific heat
For this situation : we get for q = m*ΔT *Cp
q(lost, metal) = q(gained, water)
- mass of metal(ΔT)(Cpmetal) = mass of water (ΔT) (Cpwater)
-5 * (15-100)(Cpmetal) = 20* (15-10) * (4.184J/g °C =
-5 * (-85)(Cpmetal) = 418.4
Cpmetal = 418.4 / (-5*-85) = 0.9845 J/g °C
This metal has a specific heat of 0.9845J/ g °C
Rough, tan, grainy, and scratchy are some
Answer:
Phenolphthalein is a chemical compound with the formula C20H14O4 and is often written as "HIn" or "phph" in shorthand notation. Phenolphthalein is often used as an indicator in acid–base titrations. For this application, it turns colorless in acidic solutions and pink in basic solutions.
Answer:
Water is the solvent
Both the ethanol and the hydrogen peroxide are the solute
Explanation:
Both the hydrogen peroxide and ethanol are sisobable in water.
There are 0.05 moles of ethanol.
1 litreof water contains 55.55 moles of water.
0.2 g of hydrogen peroxide contains 0.2/34 = 0.0059 moles of hydrogen peroxide (the 34 is the molar mass of hydrogen peroxide).
Since there are more moles of water, water becomes the solvent and the other two liquids dissolve in it.
Answer:
The best-known threat comes from human pressures, driven by agriculture, residential, and commercial expansion into cactus habitats. But the worst offender, the scientists were surprised to find, is the illegal trade of cactus plants and seeds, affecting 47 percent of the threatened species. There are lots of different variations of cacti.