<span>The </span>elements are arranged<span> in order of increasing atomic number. Vertical columns(called groups) contain </span>elements with similar properties. Horizontal rows called periods elements with<span> the same number of atomic orbitals(That's why Hydrogen and Helium are separated from the rest of the table).
Hope this helps:)</span>
Answer:
it is because of Dark Matter
Dark Matter, component of the universe whose presence is discerned from its gravitational attraction rather than its luminosity. Dark matter makes up 30.1 percent of the matter-energy composition of the universe; the rest is dark energy (69.4 percent) and “ordinary” visible matter (0.5 percent).
Dark matter is composed of particles that do not absorb, reflect, or emit light, so they cannot be detected by observing electromagnetic radiation. Dark matter is material that cannot be seen directly.
Explanation:
Hope It helps
Have A Nice Day : )
The material which is used as source for commercial production aluminum is bauxite.
The aluminum can be extracted from bauxite ore by the process of Bayer process.
In the Bayer process, bauxite ore is heated in the pressure vessel along with a caustic soda solution (sodium hydroxide) at a temperature between 150 to 200 °C. At this temperatures, the aluminium is dissolved in the solution as sodium aluminate in the extraction process. After separation of the residue by filtering, when the liquid is cooled gibbsite is precipitated and then it is seeded with fine-grained aluminum hydroxide crystals from previous extractions. The precipitation take 7-19 days without the addition of seed crystals.
This extraction process converts the aluminium oxide to soluble sodium aluminate, NaAlO2, which afterward converted into aluminum hydroxide and then into aluminum oxide.
Thus, we concluded that the material which is used as source for commercial production aluminum is bauxite ore.
learn more about ore:
brainly.com/question/10306443
#SPJ4
Answer:
Bonding Order = number of bonding electrons – number of antibonding electrons/2.
So for CO2, there is a total of 16 electrons, 8 of which are antibonding electrons.
So 16 – 8 = 8; divided by 2 = 4. So, 4 is the bonding order of CO2. The molecular structure of CO2 looks like this:
..~-~~..
O=C=O
..~-~~..