1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Liula [17]
3 years ago
9

In certain cases, using both the momentum principle and energy principle to analyze a system is useful, as they each can reveal

different information. You will use the both momentum principle and the energy principle in this problem.
A satellite of mass 3500 kg orbits the Earth in a circular orbit of radius of 7.3 106 m (this is above the Earth's atmosphere).The mass of the Earth is 6.0 1024 kg.
What is the magnitude of the gravitational force on the satellite due to the earth?
F= ________N
Using the momentum principle, find the speed of the satellite in orbit. (HINT: Think about the components of (dp^^\->)\/(dt) parallel and perpendicular to p^^\->.)
v = ________ m/s
Using the energy principle, find the minimum amount of work needed to move the satellite from this orbit to a location very far away from the Earth. (You can think of this energy as being supplied by work due to something outside of the system of the Earth and the satellite.)
work= ________J
Physics
1 answer:
SpyIntel [72]3 years ago
5 0

Answer:

A) F_g = 26284.48 N

B) v = 7404.18 m/s

C) E = 19.19 × 10^(10) J

Explanation:

We are given;

Mass of satellite; m = 3500 kg

Mass of the earth; M = 6 x 10²⁴ Kg

Earth circular orbit radius; R = 7.3 x 10⁶ m

A) Formula for the gravitational force is;

F_g = GmM/r²

Where G is gravitational constant = 6.67 × 10^(-11) N.m²/kg²

Plugging in the relevant values, we have;

F_g = (6.67 × 10^(-11) × 3500 × 6 x 10²⁴)/(7.3 x 10⁶)²

F_g = 26284.48 N

B) From the momentum principle, we have that the gravitational force is equal to the centripetal force.

Thus;

GmM/r² = mv²/r

Making v th subject, we have;

v = √(GM/r)

Plugging in the relevant values;

v = √(6.67 × 10^(-11) × 6 x 10²⁴)/(7.3 x 10⁶))

v = 7404.18 m/s

C) From the energy principle, the minimum amount of work is given by;

E = (GmM/r) - ½mv²

Plugging in the relevant values;

E = [(6.67 × 10^(-11) × 3500 × 6 × 10²⁴)/(7.3 x 10⁶)] - (½ × 3500 × 7404.18)

E = 19.19 × 10^(10) J

You might be interested in
What was the name of charles lindbergh’s single winged airplane for his solo flight across the atlantic?
aev [14]

Answer:

Spirit of St. Louis

Explanation:

Charles Lindbergh was known as a prolific aviator during the early twentieth century. He is well known for the flight he took from Long Island, New York, to Paris, France. It was a continuous flight across the Atlantic Ocean.

The plane he used was the Spirit of St. Louis which took more than 33 hours to complete the journey. It was the first successful flight of this kind. The airplane flew from Long Island on May 20 and landed in Paris on May 21.

4 0
3 years ago
Which change will cause an increase in the electric current produced through electromagnetic induction?using more wire loops in
allsm [11]
<span>using more wire loops in the solenoid</span>
4 0
3 years ago
Read 2 more answers
While at the county fair, you decide to ride the Ferris wheel. Having eaten too many candy apples and elephant ears, you find th
Zepler [3.9K]

Answer:

v=3.47m/s

Explanation:

The speed is by definition the distance traveled divided over the time it takes to travel that distance. In this case, this distance is the circumference of the wheel, so we have:

v=\frac{C}{t}=\frac{2\pi r}{t}

where we have written the circumference in terms of its radius.

For our values we then obtain the value:

v=\frac{2\pi r}{t}=\frac{2\pi (16m)}{(29s)}=3.47m/s

5 0
3 years ago
The masses of the Moon and Earth are 7.35 x 1022 kg and 5.97 x 1024 kg, respectively. The strength of the gravitational force be
bixtya [17]

Answer:

Distance between centre of Earth and centre of Moon is 3.85 x 10⁸ m

Explanation:

The attractive force experienced by two mass objects is known as Gravitational force.

The gravitational force is determine by the relation:

F=\frac{Gm_{1} m_{2} }{d^{2} }      ....(1)

According to the problem,

Mass of Moon, m₁ = 7.35 x 10²² kg

Mass of Earth, m₂ = 5.97 x 10²⁴ kg

Gravitational force experienced by them, F = 1.98 x 10²⁰ N

Universal gravitational constant, G = 6.67 x 10⁻¹¹ Nm²kg⁻²

Substitute these values in equation (1).

1.98\times10^{20} =\frac{6.67\times10^{-11}\times7.35\times10^{22}\times5.97\times10^{24} }{d^{2} }

d^{2}=\frac{2.93\times10^{37}}{1.98\times10^{20}}

d=\sqrt{1.48\times10^{17}}

d = 3.85 x 10⁸ m

3 0
3 years ago
Please help me<br> gqvebqubgk yfawcyvgkbuh
Sergeu [11.5K]

Answer:CCCCCCCCCCCCCCCCC

Explanation:CCCCCCCCCCCCC

4 0
3 years ago
Read 2 more answers
Other questions:
  • To achieve a speed of 2 m/s, the bottle must be dropped at m. To achieve a speed of 3 m/s, the bottle must be dropped at m. To a
    15·2 answers
  • Sarah's mom takes a parkway to work. It takes her 30 minutes to travel from mile marker 88 where she enters to her exit at mile
    14·1 answer
  • Consider first the generation of the magnetic field by the current I1(t)I1(t)I_{1}(t) in solenoid
    14·1 answer
  • A 2.00-kg textbook rests on a frictionless, horizontal surface. A cord attached to the book passes over a pulley whose diameter
    5·1 answer
  • What do you know about tides?
    12·1 answer
  • Monochromatic light of wavelength 550 no passes through a diffraction grating that has 55000 lines/m. A bright line appears on t
    14·1 answer
  • Identify two factors that determine the intensity of sound
    14·1 answer
  • Consider the transition from the energy levels n = 3 to n = 5. What is the wavelength associated with this transition, in nm?
    7·2 answers
  • Fr-ee p-o-i-n-t-s is biden bad yes or no and tell me why
    10·2 answers
  • Determine whether a moving tennis ball and a racket held by the player have the same momentum or different momentum. If differen
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!