Answer:
the answer for the question is the last option
Answer: The outer loop should carry a current of 2.0 A.
The current should flow in the counter-clockwise direction
Explanation: Please see the attachments below
To solve this problem it is necessary to address the concepts related to Torque as a function of the force and distance where it is applied and the moment of inertia from which the torque, moment of inertia and angular acceleration are related.
By definition the torque is defined as

Where,

F = Force
r = Radius
For our values we have:



Consequently the calculation of the moment of inertia would then be given by the relationship


Replacing with our values


The moment of inertia of the boxer's forearm 
Answer:
As the number of turns in the coil increases, the strength of the electromagnet increases.
Explanation:
When current flows through a coil the coil behaves as an electromagnet. The strength of electromagnet depend the amount of current, no of turns of coil and the core of coil.
B=μ₀ N I
μ₀ = permeability of the core
N = Number of turns of the coil
I = Current flowing through the coil
Increasing the current and number of coils increase the strength of electromagnet.