1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Citrus2011 [14]
3 years ago
12

Would it be faster for you to travel from planet to planet within a solar system, from star to star within a galaxy, or from gal

axy to galaxy within the universe? Explain.
Physics
1 answer:
vagabundo [1.1K]3 years ago
8 0
It would be faster for you to travel from planet to planet within a solar system because they are closer than a star to a different star, and are closer than a galaxy to another galaxy within the universe.

If you chose the same speed unit for all the same options such as the speed of light or sound:

then indeed planet to planet would be the closest.

It depends on how far away the planet is.

Light from the Sun takes eight minutes to get to Earth
But takes 5.3 hours to get to Pluto.

So Earth to say Neptune, would take about 4 hours at the speed of light.

Final Answer: Planet to Planet within a Solar System
You might be interested in
A stone that is dropped freely from rest traveled half the total height in the last second. with what velocity will it strike th
alexira [117]

Answer:

hellooooo :) ur ans is 33.5 m/s

At time t, the displacement is h/2:

Δy = v₀ t + ½ at²

h/2 = 0 + ½ gt²

h = gt²

At time t+1, the displacement is h.

Δy = v₀ t + ½ at²

h = 0 + ½ g (t + 1)²

h = ½ g (t + 1)²

Set equal and solve for t:

gt² = ½ g (t + 1)²

2t² = (t + 1)²

2t² = t² + 2t + 1

t² − 2t = 1

t² − 2t + 1 = 2

(t − 1)² = 2

t − 1 = ±√2

t = 1 ± √2

Since t > 0, t = 1 + √2.  So t+1 = 2 + √2.

At that time, the speed is:

v = at + v₀

v = g (2 + √2) + 0

v = g (2 + √2)

If g = 9.8 m/s², v = 33.5 m/s.

4 0
3 years ago
What is the length a rubberband was stretched if it has a spring constant of 5700N/m and is currently holding 8600J OF POTENTIAL
lozanna [386]

Answer:

\displaystyle \Delta x=1.74\ m

Explanation:

<u>Elastic Potential Energy </u>

Is the energy stored in an elastic material like a spring of constant k, in which case the energy is proportional to the square of the change of length Δx and the constant k.

\displaystyle PE = \frac{1}{2}k(\Delta x)^2

Given a rubber band of a spring constant of k=5700 N/m that is holding potential energy of PE=8600 J, it's required to find the change of length under these conditions.

Solving for Δx:

\displaystyle \Delta x=\swrt{\frac{2PE}{k}}

Substituting:

\displaystyle \Delta x=\sqrt{\frac{2*8600}{5700}}

Calculating:

\displaystyle \Delta x=\sqrt{3.0175}

\boxed{\displaystyle \Delta x=1.74\ m}

6 0
3 years ago
With a diameter that's 11 times larger than Earth's, _______ is the largest planet.
katovenus [111]
With a diameter that's 11 times larger than Earth's, Jupiter is the largest planet

6 0
3 years ago
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE AHHHHHHHHHHHHHHHHHHHHHHHHHHH COCOA PEBBLES RULE HEHEHEHEHEHEHE
Andrew [12]

Answer:

AAAAAAAAHHHDHSFJSBDKFANEDASNXDEHAHDBWEEEEHJDBHBAH

AAHHH YES THEY DOO AAAHHH EEHSFJWEHASAAAAHJEHER

7 0
3 years ago
Read 2 more answers
Chapter 21, Problem 009 Two identical conducting spheres, fixed in place, attract each other with an electrostatic force of 0.12
PilotLPTM [1.2K]

Answer:

a) -1.325 μC

b) 4.17μC

Explanation:

First, you need to know that charge is conserved. So, the adition of the charges, as there is no lost in charge, should always be the same. Also, after the wire is removed, both spheres will have the same charge, trying to find equilibrium. In summary:

q_1 + q_2 = constant\\q_1_f = q_2_f |Then\\q_1_f + q_2_f = 2q_1_f = q_1_o+q_2_o\\q_1_f = q_2_f = \frac{q_1_o+q_2_o}{2}

We know both q1f and q2f must be positive, because the negative charge at the beginning was the the smaller.

The electrostatic force is equal to:

F_e = k\frac{q_1q_2}{r^2}

K is the Coulomb constant, equal to 9*10^9 Nm^2/C^2

Now, we are told that the electrostatic force after the wire is equal to 0.0443 N:

F_e_f = k \frac{q_1_fq_2_f}{r^2} = k\frac{\frac{q_1_o+q_2_o}{2}\frac{q_1_o+q_2_o}{2}}{r^2} = k\frac{(q_1_o+q_2_o)^2}{4r^2}  \\(q_1_o+q_2_o) = \sqrt{\frac{F_e_f*4r^2}{k}} = \sqrt{\frac{0.0443N *4(0.641m)^2}{9*10^9Nm^2/C^2} } = 2.844 *10^{-6}C \\ q_1_o = 2.844*10^{-6}C - q_2_o

Originally, the force is negative because it was an attraction force, therefore, its direction was opposite to the direction of the repulsive force after the wire:

F_e_o = k\frac{q_1_oq_2_o}{r^2}\\ q_1_oq_2_o = \frac{F_e_o*r^2}{k} = \frac{-0.121N(0.641m)^2}{9*10^9Nm^2/C^2} = -5.524*10^{-12}

(2.844*10^{-6}C - q_2_o)q_2_o = -5.524*10^{-12}\\0 = q_2_o^2 - 2.844*10^{-6}q_2_o - 5.524*10^{-12}

Solving the quadratic equation:

q_2_o = 4.17*10^{-6}C | -1.325 * 10^{-6}C

for this values q_1 wil be:

q_1_o =  -1.325 *10^{-6}C | 4.17*10^{-6}C

So as you can see, the negative charge will always be -1.325 μC and the positive 4.17μC

5 0
3 years ago
Other questions:
  • A 2.0-kg object moving at 5.0 m/s collides with and sticks to an 8.0-kg object initially at rest. Determine the kinetic energy l
    15·1 answer
  • Technician A says that magnetic lines of force can be seen by placing iron filings on a piece of paper and then holding them ove
    14·2 answers
  • Which type of rock is formed from cooling molten rock?
    9·1 answer
  • "What is the mass of the heaviest book this person can hold onto vertically before it slips out of his or her fingers? The coeff
    7·2 answers
  • What must happen for an ion To form
    9·1 answer
  • On a cold winter day, the flow of heat is from the outside in. A.True B.False
    5·2 answers
  • A projector is placed on the ground 22 ft. away from a projector screen. A 5.2 ft. tall person is walking toward the screen at a
    11·1 answer
  • A large truck breaks down out on the road and receives a push back to town by a small compact car.
    5·1 answer
  • Help . i illustrated the question with picture.
    7·1 answer
  • A proton traveling due west in a region that contains only a magnetic field experiences a vertically upward force (away from the
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!