Answer:
1.92 J
Explanation:
From the question given above, the following data were obtained:
Mass (m) = 200 Kg
Spring constant (K) = 10⁶ N/m
Workdone =?
Next, we shall determine the force exerted on the spring. This can be obtained as follow:
Mass (m) = 200 Kg
Acceleration due to gravity (g) = 9.8 m/s²
Force (F) =?
F = m × g
F = 200 × 9.8
F = 1960 N
Next we shall determine the extent to which the spring stretches. This can be obtained as follow:
Spring constant (K) = 10⁶ N/m
Force (F) = 1960 N
Extention (e) =?
F = Ke
1960 = 10⁶ × e
Divide both side by 10⁶
e = 1960 / 10⁶
e = 0.00196 m
Finally, we shall determine energy (Workdone) on the spring as follow:
Spring constant (K) = 10⁶ N/m
Extention (e) = 0.00196 m
Energy (E) =?
E = ½Ke²
E = ½ × 10⁶ × (0.00196)²
E = 1.92 J
Therefore, the Workdone on the spring is 1.92 J
The observer can conclude that the sound is moving away from them and that its speed is increasing.
Answer:
Explanation:
See the attachment for the details. A right triangle is formed to find the hypotenuse of the two legs consisting of the actual driving distances and times. The hypotenuse gives the vector information for the displacement at the end of 8 hours of driving.
The individual driving times and distances are summed to provide:
(<u>a) How far did he travel?</u>
103 km
<u>(b) What was his average speed?</u>
12.88 km/h
<u>(c) What was his displacement?</u>
73.82 km
<u>(d) What was his average velocity?</u>
9.228 km/h