Answer:
Stopwatches versus clocks. To improve reliability repeat the experiment multiple times according to an identical procedure. Record these steps so the experiment can be repeated at any time
Explanation:
Answer:
SiH4 is nonpolar and BBr3 is nonpolar and SiF4 is nonpolar.
Explanation:
SiH4 is a non-polar compound. Though the Si–H bonds are polar, as a result of different electronegativities of Si and H. However, as there are 4 electron repulsions around the central Si atom, the polar bonds are arranged symmetrically around the central atom having a tetrahedral shape hence they cancel out making the compound nonpolar.
SiF4 is a nonpolar molecule because the fluorine atoms are arranged symetrically around the central silicon atom in a tetrahedral molecule with all of the regions of negative charge cancelling each other out just like in SiH4.
The 3 bromine atoms all lie in the same plane thus the geometry of the compound will be trigonal planar. The BBr3 will be non polar because the three B-Br bonds will cancel out each others' dipole moment given that they are in the same plane.
Answer:
Explained below.
Explanation:
A tennis player with two sneakers wouldn't bond to any other tennis player because he is already stable and complete with the 2 and doesn't need another players assistance to make him stand well.
However, helium atom with two electrons wouldn't bond to any other atoms because it is stable. This stability arises from the fact that it has two protons and 2 electrons, of which the 2 electrons completely fill its valence shell/outer most shell to make it neutral.
Answer: 770 g water are needed to dissolve 27.8 g of ammonium nitrate
in order to prepare a 0.452 m solution
Explanation:
Molality : It is defined as the number of moles of solute present per kg of solvent
Formula used :

where,
n= moles of solute
Moles of
= weight of the solvent in g = ?


Thus 770 g water are needed to dissolve 27.8 g of ammonium nitrate
in order to prepare a 0.452 m solution
Answer:
Its probably none of those.
Explanation:
White dwarf temperatures can exceed 100,000 Kelvin according to NASA (that's about 179,500 degrees Fahrenheit). Despite these sweltering temperatures, white dwarfs have a low luminosity as they're so small in size according to NMSU.