Angular acceleration = (change in angular speed) / (time for the change)
Change in angular speed = (ending speed) minus (starting speed)
Change in angular speed = (16 rad/s) - (zero) = 16 rad/s .
Angular acceleration = (16 rad/s) / (0.4 s)
(Average) angular acceleration = 40 rad/s²
The magnitude of acceleration is (change in speed) / (time for the change).
Change in speed = (speed at the end) - (speed at the beginning) =
(16 m/s) - (0) = 16 m/s .
Time for the change = 4 s .
Magnitude of acceleration = (16 m/s) / (4 s) = 4 m/s per sec = 4 m/s² .
Let's cut through the weeds and the trash
and get down to the real situation:
A stone is tossed straight up at 5.89 m/s .
Ignore air resistance.
Gravity slows down the speed of any rising object by 9.8 m/s every second.
So the stone (aka Billy-Bob-Joe) continues to rise for
(5.89 m/s / 9.8 m/s²) = 0.6 seconds.
At that timer, he has run out of upward gas. He is at the top
of his rise, he stops rising, and begins to fall.
His average speed on the way up is (1/2) (5.89 + 0) = 2.945 m/s .
Moving for 0.6 seconds at an average speed of 2.945 m/s,
he topped out at
(2.945 m/s) (0.6 s) = 1.767 meters above the trampoline.
With no other forces other than gravity acting on him, it takes him
the same time to come down from the peak as it took to rise to it.
(0.6 sec up) + (0.6 sec down) = 1.2 seconds until he hits rubber again.
Answer:
16/22
Explanation:
you add red and blue together