Answer:
Negative sign says that release of heat.
Explanation:
The expression for the calculation of the heat released or absorbed of a process is shown below as:-
Where,
is the heat released or absorbed
m is the mass
C is the specific heat capacity
is the temperature change
Thus, given that:-
Mass = 25.2 g
Specific heat = 0.444 J/g°C
So,
Negative sign says that release of heat.
Answer:
4) Each cytochrome has an iron‑containing heme group that accepts electrons and then donates the electrons to a more electronegative substance.
Explanation:
The cytochromes are <u>proteins that contain heme prosthetic groups</u>. Cytochromes <u>undergo oxidation and reduction through loss or gain of a single electron by the iron atom in the heme of the cytochrome</u>:

The reduced form of ubiquinone (QH₂), an extraordinarily mobile transporter, transfers electrons to cytochrome reductase, a complex that contains cytochromes <em>b</em> and <em>c₁</em>, and a Fe-S center. This second complex reduces cytochrome <em>c</em>, a water-soluble membrane peripheral protein. Cytochrome <em>c</em>, like ubiquinone (Q), is a mobile electron transporter, which is transferred to cytochrome oxidase. This third complex contains the cytochromes <em>a</em>, <em>a₃</em> and two copper ions. Heme iron and a copper ion of this oxidase transfer electrons to O₂, as the last acceptor, to form water.
Each transporter "downstream" is <u>more electronegative</u><u> than its neighbor </u>"upstream"; oxygen is located in the inferior part of the chain. Thus, the <u>electrons fall in an energetic gradient</u> in the electron chain transport to a more stable localization in the <u>electronegative oxygen atom</u>.
Answer:
the initial concentration of SCN- in the mixture is 0.00588 M
Explanation:
The computation of the initial concentration of the SCN^- in the mixture is as follows:
As we know that

As it is mentioned in the question that KSCN is present 10 mL of 0.05 M
So, the total milimoles of SCN^- is
= 10 × 0.05
= 0.5 m moles
The total volume in mixture is
= 45 + 10 + 30
= 85 mL
Now the initial concentration of the SCN^- is
= 0.5 ÷ 85
= 0.00588 M
hence, the initial concentration of SCN- in the mixture is 0.00588 M
Answer:
The answer to your question is: density = 4 g/cm³
Explanation:
Data
Volume = 100 cm³
Mass = 400 g
Density = ?
Formula
density = mass/volume
substitution
density = 400/100 = 4 g/cm³